43,394 research outputs found

    Measuring Qualities for OSGi Component-Based Applications

    Get PDF
    International audienceComponent-based software engineering (CBSE) begins to reach a certain level of maturity. Indeed, for the development of complex applications the use of component paradigm has become common. Therefore, the evaluation of the quality of these applications becomes necessary. In this context, the use of metrics is considered very important. Several metrics specific to component-based applications have been proposed. However, any of these metrics gained the consensus of the CBSE community and mainly there is no proposed tool to support them. As a large part of frameworks for component-based application development is based on object-oriented technology, we propose to use some object-oriented (OO) metrics to evaluate component-based applications produced with this kind of framework. Indeed, these metrics became a standard in OO community. So, they are well-defined, well-known and empirically validated. To identify which object-oriented metrics are useful for the evaluation of component-based applications, we have conducted an experimental study on 10 OSGi applications. This study also gives us the opportunity to discuss on the respect by OSGi developers of some properties pointed out by the literatur

    Measuring Qualities for OSGi Component-Based Applications

    Get PDF
    International audienceComponent-based software engineering (CBSE) begins to reach a certain level of maturity. Indeed, for the development of complex applications the use of component paradigm has become common. Therefore, the evaluation of the quality of these applications becomes necessary. In this context, the use of metrics is considered very important. Several metrics specific to component-based applications have been proposed. However, any of these metrics gained the consensus of the CBSE community and mainly there is no proposed tool to support them. As a large part of frameworks for component-based application development is based on object-oriented technology, we propose to use some object-oriented (OO) metrics to evaluate component-based applications produced with this kind of framework. Indeed, these metrics became a standard in OO community. So, they are well-defined, well-known and empirically validated. To identify which object-oriented metrics are useful for the evaluation of component-based applications, we have conducted an experimental study on 10 OSGi applications. This study also gives us the opportunity to discuss on the respect by OSGi developers of some properties pointed out by the literatur

    An Exploratory Investigation on the Invasiveness of Environmental Modeling Frameworks

    Get PDF
    Environmental modeling frameworks provide an array of useful features that model developers can harness when implementing models. Each framework differs in how it provides features to a model developer via its Application Programming Interface (API). Environmental modelers harness framework features by calling and interfacing with the framework API. As modelers write model code, they make framework-specific function calls and use framework specific data types for achieving the functionality of the model. As a result of this development approach, model code becomes coupled with and dependent on a specific modeling framework. Coupling to a specific framework makes migration to other frameworks and reuse of the code outside the original framework more difficult. This complicates collaboration between model developers wishing to share model code that ma y have been developed in a variety of languages and frameworks. This paper provides initial results of an exploratory investigation on the invasiveness of environmental modeling frameworks. Invasiveness is defined as th e coupling between application (i.e., model) and framework code used to implement the model. By comparing the implementation of an environmental model across several modeling frameworks, we aim to better understand the consequences of framework design. How frameworks present functionality to modelers through APIs can lead to consequences with respect to model development, model maintenance, reuse of model code, and ultimately collaboration among model developers. By measuring framework invasiveness, we hope to provide environmental modeling framework developers and environmental modelers with valuable in formation to assist in future development efforts. Eight implementations (six framework-based) of Thornthwaite, a simple water balance model, were made in a variety of environmental modeling frameworks and languages. A set of software metrics were proposed and applied to measure invasiveness between model implementation code and framework code. The metrics produced a rank ordering of invasiveness for the framework-based implementations of Thornthwaite. We compared model invasiveness results with several popular software metrics including size in lines of code (LOC), cyclomatic complexity, and object oriented coupling. To investigate software quality implications of framework invasiveness we checked for relationships between the Chidamber and Kemerer (1994) object oriented software metrics and our framework invasiveness measures. For the six framework-based implementations of Thornthwaite we found a five-fold variation in code size (LOC). We observed up to a seven-fold variation in total cyclomatic complexity, and a two to three-fold variation in object oriented coupling. For the model implementations we found that total size, total complexity, and total coupling all had a significant positive correlation. The raw count version of our invasiveness measures correlated with application size (LOC), total cyclomatic complexity, total efferent coupling (fan out) and total afferent coupling (fan in). Large size, complexity, and high levels of coupling between units (classes, modules) in a software system are often cited in software engineering as causes of high maintenance costs due to poor understandability and flexibility of the code. This study provides initial results but further investigation is desired to evaluate the utility of our invasiveness measurement approach as well as the software quality implications of framework invasiveness

    A Testability Analysis Framework for Non-Functional Properties

    Full text link
    This paper presents background, the basic steps and an example for a testability analysis framework for non-functional properties

    Real world evaluation of aspect-oriented software development : a thesis submitted in partial fulfilment of the requirements for the degree of Master of Science in Computer Science at Massey University, Palmerston North, New Zealand

    Get PDF
    Software development has improved over the past decade with the rise in the popularity of the Object-Oriented (OO) development approach. However, software projects continue to grow in complexity and continue to have alarmingly low rates of success. Aspect-Oriented Programming (AOP) is touted to be one solution to this software development problem. It shows promise of reducing programming complexity, making software more flexible and more amenable to change. The central concept introduced by AOP is the aspect. An aspect is used to modularise crosscutting concerns in a similar fashion to the way classes modularise business concerns. A crosscutting concern cannot be modularised in approaches such as OO because the code to realise the concern must be spread throughout the module (e.g. a tracing concent is implemented by adding code to every method in a system). AOP also introduces join points, pointcuts, and advice which are used with aspects to capture crosscutting concerns so they can be localised in a modular unit. OO took approximately 20 years to become a mainstream development approach. AOP was only invented in 1997. This project considers whether AOP is ready for commercial adoption. This requires analysis of the AOP implementations available, tool support, design processes, testing tools, standards, and support infrastructure. Only when AOP is evaluated across all these criteria can it be established whether it is ready to be used in commercial projects. Moreover, if companies are to invest time and money into adopting AOP, they must be aware of the benefits and risks associated with its adoption. This project attempts to quantify the potential benefits in adopting AOP, as well as identifying areas of risk. SolNet Solutions Ltd, an Information Technology (IT) company in Wellington, New Zealand, is used in this study as a target environment for integration of aspects into a commercial development process. SolNet is in the business of delivering large scale enterprise Java applications. To assist in this process they have developed a Common Services Architecture (CSA) containing components that can be reused to reduce risk and cost to clients. However, the CSA is complicated and SolNet have identified aspects as a potential solution to decrease the complexity. Aspects were found to bring substantial improvement to the Service Layer of SolNet. applications, including substantial reductions in complexity and size. This reduces the cost and time of development, as well as the risk associated with the projects. Moreover, the CSA was used in a more consistent fashion making the system easier to understand and maintain, and several crosscutting concerns were modularised as part of a reusable aspect library which could eventually form part of their CSA. It was found that AOP is approaching commercial readiness. However, more work is needed on defining standards for aspect languages and modelling of design elements. The current solutions in this area are commercially viable, but would greatly benefit from a standardised approach. Aspect systems can be difficult to test and the effect of the weaving process on Java serialisation requires further investigation
    • …
    corecore