1,119 research outputs found

    Parallel High-Order Anisotropic Meshing Using Discrete Metric Tensors

    Get PDF
    This paper presents a metric-aligned meshing algorithm that relies on the Lp-Centroidal Voronoi Tesselation approach. A prototype of this algorithm was first presented at the Scitech conference of 2018 and this work is an extension to that paper. At the end of the previously presented work, a set of problems were mentioned which we are trying to address in this paper. First, we show a significant improvement in code performance since we were limited to present relatively benign (analytical) test cases. Second, we demonstrate here that we are able to rely on discrete metric data that is delivered by a Computational Fluid Dynamics (CFD) solver. Third, we demonstrate how to generate high-order curved elements that are aligned with the underlying discrete metric field

    Kernel Approximation on Manifolds I: Bounding the Lebesgue Constant

    Get PDF
    The purpose of this paper is to establish that for any compact, connected C^{\infty} Riemannian manifold there exists a robust family of kernels of increasing smoothness that are well suited for interpolation. They generate Lagrange functions that are uniformly bounded and decay away from their center at an exponential rate. An immediate corollary is that the corresponding Lebesgue constant will be uniformly bounded with a constant whose only dependence on the set of data sites is reflected in the mesh ratio, which measures the uniformity of the data. The analysis needed for these results was inspired by some fundamental work of Matveev where the Sobolev decay of Lagrange functions associated with certain kernels on \Omega \subset R^d was obtained. With a bit more work, one establishes the following: Lebesgue constants associated with surface splines and Sobolev splines are uniformly bounded on R^d provided the data sites \Xi are quasi-uniformly distributed. The non-Euclidean case is more involved as the geometry of the underlying surface comes into play. In addition to establishing bounded Lebesgue constants in this setting, a "zeros lemma" for compact Riemannian manifolds is established.Comment: 33 pages, 2 figures, new title, accepted for publication in SIAM J. on Math. Ana

    Solutions of the Einstein Constraint Equations with Apparent Horizon Boundaries

    Full text link
    We construct asymptotically Euclidean solutions of the vacuum Einstein constraint equations with an apparent horizon boundary condition. Specifically, we give sufficient conditions for the constant mean curvature conformal method to generate such solutions. The method of proof is based on the barrier method used by Isenberg for compact manifolds without boundary, suitably extended to accommodate semilinear boundary conditions and low regularity metrics. As a consequence of our results for manifolds with boundary, we also obtain improvements to the theory of the constraint equations on asymptotically Euclidean manifolds without boundary.Comment: 27 pages, 1 figure, TeX, v3. Final version to appear in CMP. Exposition has been extensively tightened and the proof of Proposition 3.5 has been simplifie

    How a nonconvergent recovered Hessian works in mesh adaptation

    Get PDF
    Hessian recovery has been commonly used in mesh adaptation for obtaining the required magnitude and direction information of the solution error. Unfortunately, a recovered Hessian from a linear finite element approximation is nonconvergent in general as the mesh is refined. It has been observed numerically that adaptive meshes based on such a nonconvergent recovered Hessian can nevertheless lead to an optimal error in the finite element approximation. This also explains why Hessian recovery is still widely used despite its nonconvergence. In this paper we develop an error bound for the linear finite element solution of a general boundary value problem under a mild assumption on the closeness of the recovered Hessian to the exact one. Numerical results show that this closeness assumption is satisfied by the recovered Hessian obtained with commonly used Hessian recovery methods. Moreover, it is shown that the finite element error changes gradually with the closeness of the recovered Hessian. This provides an explanation on how a nonconvergent recovered Hessian works in mesh adaptation.Comment: Revised (improved proofs and a better example
    corecore