4,334 research outputs found

    Parameterized and approximation complexity of the detection pair problem in graphs

    Full text link
    We study the complexity of the problem DETECTION PAIR. A detection pair of a graph GG is a pair (W,L)(W,L) of sets of detectors with W⊆V(G)W\subseteq V(G), the watchers, and L⊆V(G)L\subseteq V(G), the listeners, such that for every pair u,vu,v of vertices that are not dominated by a watcher of WW, there is a listener of LL whose distances to uu and to vv are different. The goal is to minimize ∣W∣+∣L∣|W|+|L|. This problem generalizes the two classic problems DOMINATING SET and METRIC DIMENSION, that correspond to the restrictions L=∅L=\emptyset and W=∅W=\emptyset, respectively. DETECTION PAIR was recently introduced by Finbow, Hartnell and Young [A. S. Finbow, B. L. Hartnell and J. R. Young. The complexity of monitoring a network with both watchers and listeners. Manuscript, 2015], who proved it to be NP-complete on trees, a surprising result given that both DOMINATING SET and METRIC DIMENSION are known to be linear-time solvable on trees. It follows from an existing reduction by Hartung and Nichterlein for METRIC DIMENSION that even on bipartite subcubic graphs of arbitrarily large girth, DETECTION PAIR is NP-hard to approximate within a sub-logarithmic factor and W[2]-hard (when parameterized by solution size). We show, using a reduction to SET COVER, that DETECTION PAIR is approximable within a factor logarithmic in the number of vertices of the input graph. Our two main results are a linear-time 22-approximation algorithm and an FPT algorithm for DETECTION PAIR on trees.Comment: 13 page

    Alternative parameterizations of Metric Dimension

    Get PDF
    A set of vertices WW in a graph GG is called resolving if for any two distinct x,y∈V(G)x,y\in V(G), there is v∈Wv\in W such that distG(v,x)≠distG(v,y){\rm dist}_G(v,x)\neq{\rm dist}_G(v,y), where distG(u,v){\rm dist}_G(u,v) denotes the length of a shortest path between uu and vv in the graph GG. The metric dimension md(G){\rm md}(G) of GG is the minimum cardinality of a resolving set. The Metric Dimension problem, i.e. deciding whether md(G)≤k{\rm md}(G)\le k, is NP-complete even for interval graphs (Foucaud et al., 2017). We study Metric Dimension (for arbitrary graphs) from the lens of parameterized complexity. The problem parameterized by kk was proved to be W[2]W[2]-hard by Hartung and Nichterlein (2013) and we study the dual parameterization, i.e., the problem of whether md(G)≤n−k,{\rm md}(G)\le n- k, where nn is the order of GG. We prove that the dual parameterization admits (a) a kernel with at most 3k43k^4 vertices and (b) an algorithm of runtime O∗(4k+o(k)).O^*(4^{k+o(k)}). Hartung and Nichterlein (2013) also observed that Metric Dimension is fixed-parameter tractable when parameterized by the vertex cover number vc(G)vc(G) of the input graph. We complement this observation by showing that it does not admit a polynomial kernel even when parameterized by vc(G)+kvc(G) + k. Our reduction also gives evidence for non-existence of polynomial Turing kernels

    Narrowing the Gap: Random Forests In Theory and In Practice

    Full text link
    Despite widespread interest and practical use, the theoretical properties of random forests are still not well understood. In this paper we contribute to this understanding in two ways. We present a new theoretically tractable variant of random regression forests and prove that our algorithm is consistent. We also provide an empirical evaluation, comparing our algorithm and other theoretically tractable random forest models to the random forest algorithm used in practice. Our experiments provide insight into the relative importance of different simplifications that theoreticians have made to obtain tractable models for analysis.Comment: Under review by the International Conference on Machine Learning (ICML) 201
    • …
    corecore