4 research outputs found

    Design of reservoir computing systems for the recognition of noise corrupted speech and handwriting

    Get PDF

    Novel multiscale methods for nonlinear speech analysis

    Get PDF
    Cette thèse présente une recherche exploratoire sur l'application du Formalisme Microcanonique Multiéchelles (FMM) à l'analyse de la parole. Dérivé de principes issus en physique statistique, le FMM permet une analyse géométrique précise de la dynamique non linéaire des signaux complexes. Il est fondé sur l'estimation des paramètres géométriques locaux (les exposants de singularité) qui quantifient le degré de prédictibilité à chaque point du signal. Si correctement définis est estimés, ils fournissent des informations précieuses sur la dynamique locale de signaux complexes. Nous démontrons le potentiel du FMM dans l'analyse de la parole en développant: un algorithme performant pour la segmentation phonétique, un nouveau codeur, un algorithme robuste pour la détection précise des instants de fermeture glottale, un algorithme rapide pour l analyse par prédiction linéaire parcimonieuse et une solution efficace pour l approximation multipulse du signal source d'excitation.This thesis presents an exploratory research on the application of a nonlinear multiscale formalism, called the Microcanonical Multiscale Formalism (the MMF), to the analysis of speech signals. Derived from principles in Statistical Physics, the MMF allows accurate analysis of the nonlinear dynamics of complex signals. It relies on the estimation of local geometrical parameters, the singularity exponents (SE), which quantify the degree of predictability at each point of the signal domain. When correctly defined and estimated, these exponents can provide valuable information about the local dynamics of complex signals and has been successfully used in many applications ranging from signal representation to inference and prediction.We show the relevance of the MMF to speech analysis and develop several applications to show the strength and potential of the formalism. Using the MMF, in this thesis we introduce: a novel and accurate text-independent phonetic segmentation algorithm, a novel waveform coder, a robust accurate algorithm for detection of the Glottal Closure Instants, a closed-form solution for the problem of sparse linear prediction analysis and finally, an efficient algorithm for estimation of the excitation source signal.BORDEAUX1-Bib.electronique (335229901) / SudocSudocFranceF

    Features of hearing: applications of machine learning to uncover the building blocks of hearing

    Get PDF
    Recent advances in machine learning have instigated a renewed interest in using machine learning approaches to better understand human sensory processing. This line of research is particularly interesting for speech research since speech comprehension is uniquely human, which complicates obtaining detailed neural recordings. In this thesis, I explore how machine learning can be used to uncover new knowledge about the auditory system, with a focus on discovering robust auditory features. The resulting increased understanding of the noise robustness of human hearing may help to better assist those with hearing loss and improve Automatic Speech Recognition (ASR) systems. First, I show how computational neuroscience and machine learning can be combined to generate hypotheses about auditory features. I introduce a neural feature detection model with a modest number of parameters that is compatible with auditory physiology. By testing feature detector variants in a speech classification task, I confirm the importance of both well-studied and lesser-known auditory features. Second, I investigate whether ASR software is a good candidate model of the human auditory system. By comparing several state-of-the-art ASR systems to the results from humans on a range of psychometric experiments, I show that these ASR systems diverge markedly from humans in at least some psychometric tests. This implies that none of these systems act as a strong proxy for human speech recognition, although some may be useful when asking more narrowly defined questions. For neuroscientists, this thesis exemplifies how machine learning can be used to generate new hypotheses about human hearing, while also highlighting the caveats of investigating systems that may work fundamentally differently from the human brain. For machine learning engineers, I point to tangible directions for improving ASR systems. To motivate the continued cross-fertilization between these fields, a toolbox that allows researchers to assess new ASR systems has been released.Open Acces
    corecore