25 research outputs found

    A hybrid algorithm for spatial and wavelet domain image restoration

    Get PDF
    The recent algorithm ForWaRD based on the two steps: (i) the Fourier domain deblurring and (ii) wavelet domain denoising, shows better restoration results than those using traditional image restoration methods. In this paper, we study other deblurring schemes in ForWaRD and demonstrate such two-step approach is effective for image restoration.published_or_final_versionS P I E Conference on Visual Communications and Image Processing 2005, Beijing, China, 12-15 July 2005. In Proceedings Of Spie - The International Society For Optical Engineering, 2005, v. 5960 n. 4, p. 59605V-1 - 59605V-

    Generalized SURE for Exponential Families: Applications to Regularization

    Full text link
    Stein's unbiased risk estimate (SURE) was proposed by Stein for the independent, identically distributed (iid) Gaussian model in order to derive estimates that dominate least-squares (LS). In recent years, the SURE criterion has been employed in a variety of denoising problems for choosing regularization parameters that minimize an estimate of the mean-squared error (MSE). However, its use has been limited to the iid case which precludes many important applications. In this paper we begin by deriving a SURE counterpart for general, not necessarily iid distributions from the exponential family. This enables extending the SURE design technique to a much broader class of problems. Based on this generalization we suggest a new method for choosing regularization parameters in penalized LS estimators. We then demonstrate its superior performance over the conventional generalized cross validation approach and the discrepancy method in the context of image deblurring and deconvolution. The SURE technique can also be used to design estimates without predefining their structure. However, allowing for too many free parameters impairs the performance of the resulting estimates. To address this inherent tradeoff we propose a regularized SURE objective. Based on this design criterion, we derive a wavelet denoising strategy that is similar in sprit to the standard soft-threshold approach but can lead to improved MSE performance.Comment: to appear in the IEEE Transactions on Signal Processin

    Effective Image Restorations Using a Novel Spatial Adaptive Prior

    Get PDF
    Bayesian or Maximum a posteriori (MAP) approaches can effectively overcome the ill-posed problems of image restoration or deconvolution through incorporating a priori image information. Many restoration methods, such as nonquadratic prior Bayesian restoration and total variation regularization, have been proposed with edge-preserving and noise-removing properties. However, these methods are often inefficient in restoring continuous variation region and suppressing block artifacts. To handle this, this paper proposes a Bayesian restoration approach with a novel spatial adaptive (SA) prior. Through selectively and adaptively incorporating the nonlocal image information into the SA prior model, the proposed method effectively suppress the negative disturbance from irrelevant neighbor pixels, and utilizes the positive regularization from the relevant ones. A two-step restoration algorithm for the proposed approach is also given. Comparative experimentation and analysis demonstrate that, bearing high-quality edge-preserving and noise-removing properties, the proposed restoration also has good deblocking property
    corecore