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ABSTRACT

The recent algorithm ForWaRD based on the two steps: (i) the Fourier domain deblurring and (ii) wavelet
domain denoising, shows better restoration results than those using traditional image restoration methods. In
this paper, we study other deblurring schemes in ForWaRD and demonstrate such two-step approach is effective
for image restoration.
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1. INTRODUCTION

Image restoration problem is an important image processing task in many real world applications. The observed
image results from blurring operations performed on the original image, and it is also corrupted by additive
noises. The blurring of images often occurs from a relative motion between the camera and the original scene,
from defocusing of the lens system, or from atmospheric turbulence.

In digital image processing, the discrete imaging model of the degradation process can be represented by
using vectors and matrices. With the lexicographical ordering of the original image f and the observed image g,
their relationship can be expressed as follows:

g = Hf + n. (1)

Here H is the blurring matrix and n is a vector of zero-mean Gaussian white noise with variance σ2. The task
of image restoration is to recover the original image f from the observed image g.

Image restoration is an ill-posed problem. The simple approach of performing the inverse transformation is
not feasible. The inverse transformation may be singular or may be very ill-conditioned, a small perturbation in
the observed image can produce a large perturbation in the restored image. Regularization theory is often used
to handle such ill-conditioned problems. Image restoration methods are usually based on the construction of a
regularized energy functional. The energy functional is the weighted sum of the two terms. The first term is the
data fitting term ‖g − Hf‖22 and the second term is the stabilized energy functional which contains some prior
information about the original image f to alleviate the problem of ill-conditioning characteristics. By adjusting
the regularization (weighting) parameter, a compromise is achieved to suppress the noise and preserve the nature
of the original image. We remark that deblurring and denoising are performed simultaneously in the restoration
process. In the literature, Constrained Least Squares (CLS) and Adaptive Regularized Least Squares (ARLS)
are two common image restoration methods, see for instance.1

Further author information: (Send correspondence to Y. Wen.)
Y.Wen: E-mail: wenyouwei@yahoo.com, The research of this author is supported in part by the grant of the project of
oil resources in pre-cenozoic layer in Gulf of Bohai No. KZCX1SW-18, and Guangdong Natural Science Foundation of
Grant No. 032475.
W.Ching: E-mail: wkc@maths.hku.hk, The research of this author is supported in part by Hong Kong Research Grants
Council Grant No. HKU 7126/02P and HKU CRCG Grant Nos. 10204436, 10205105.
M.Ng: E-mail: mng@maths.hku.hk. The research of this author is supported in part by Hong Kong Research Grants
Council Grant Nos. HKU 7130/02P, 7046/03P and 7035/04P.

Visual Communications and Image Processing 2005, edited by Shipeng Li,
Fernando Pereira, Heung-Yeung Shum, Andrew G. Tescher, Proc. of SPIE Vol. 5960

(SPIE, Bellingham, WA, 2005) · 0277-786X/05/$15 · doi: 10.1117/12.633379

Proc. of SPIE Vol. 5960  59605V-1

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 04/16/2013 Terms of Use: http://spiedl.org/terms



The use of wavelet in image restoration is a relatively prevalent concept. Its success is due to the fact that
signals and images usually have sparse wavelet representations. Therefore a few but significant wavelet coefficients
can be used in the representation. Banham and Katsaggelos2 have developed and studied a multi-scale Kalman
filter in a wavelet domain for image processing applications. Recently, Figueiredo3 proposed and developed an
EM algorithm for image restoration in a wavelet domain. A review on different wavelet-based image restoration
methods can also be found in Figueiredo and Nowak’s paper.3

The use of the two-step approach for the task of image restoration is recently studied by several researchers.
Nowak and Thul4 first proposed the two-step approach when they studied the linear shift invariant inverse
problem arising from photon-limited imaging. The first step is to take the inverse of the convolution kernel
directly. The second step is to perform denoising in the wavelet domain. Such two-step method is further
developed and studied by Neelamani et al.,5 and it is called ForWaRD. Both theoretical analysis of ForWaRD
and simulation results show that this two-step method performs very well for image restoration. The main aim
of this paper is to further consider other deblurring schemes in ForWaRD, and present experimental results to
demonstrate that the two-step approach is indeed effective for image restoration.

The outline of this paper is as follows. In Section 2, we review on ForWaRD. In Section 3, we present other
deblurring schemes. In Section 4, experimental results are given to illustrate the proposed method. Finally, we
give concluding remarks in Section 5.

2. A REVIEW ON FORWARD IMAGE RESTORATION

2.1. The Wiener Filter Deblurring.

Under the periodic boundary condition,6 the blurring model in (1) can be re-written in the Fourier domain
as follows: G = HF + N , where G, H and F are the discrete Fourier transforms of g, H and f respectively.
The Wiener filter is the Mean Squares Error (MSE) optimal stationary linear filter for deblurring and denoising
degraded images. In the Fourier domain, it can be expressed as follows:

K =
H∗Px

|H|2Px + σ2
. (2)

Here σ2 is the noise variance and Px denotes the power spectra density of f . Hillery and Chin proposed a
method to estimate the power spectral denisity Px.7 When the original image is considered to be deterministic,7

Px = |F|2. Thus the Fourier coefficients of the restored image are given by

F̃ = KG =
H∗|F|2G

|H|2|F|2 + σ2
,

where ∗ denotes the conjugate transpose.

2.2. The Wavelet-domain Denoising.

When the blurring operator is scale homogeneous, Donoho8 proposed a very efficient threshold procedure for
denoising which was called wavelet vaguelette denoising. If an image is corrupted by noises, then the noisy pixel
values will be converted to noisy wavelet coefficients. The idea of this method is based on that large wavelet
coefficients carry significant information and should be kept or shrunk; small coefficients are mostly noisy signal
and can be ignored. Wavelet-based noise reduction algorithms are asymptotically near optimal for a wide class
of signals corrupted by additive Gaussian white noises. However, such algorithms also work well when the noise
is neither white noise nor Gaussian.9

Consider g = f + n and assume that the length of g is 2k. Denote the wavelet coefficients of g, f and n by
gw, fw and nw respectively.10 Thus we obtain gw = fw +nw or gw

i = fw
i +nw

i . Here gw
i , fw

i and nw
i are the ith

wavelet coefficient of the observed signal, the original signal and the noise. In the soft-thresholding method,11

we replace gw
i by the shrunk coefficients sλ(gw

i ) where

f
w

i = sλ(gw
i ) =

{
sgn(gw

i )(|gw
i | − λ), |gw

i | > λ,
0, |gw

i | ≤ λ.
(3)
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While in the hard-thresholding method, we ignore all these coefficients |gw
i | which are be less than a threshold

value λ. In this case, sλ(gw
i ) is given as follows:

f
w

i = sλ(gw
i ) =

{
gw

i , |gw
i | > λ,

0, |gw
i | ≤ λ.

(4)

Donoho and Johnstone12 proposed the choice of parameter λ =
√

2 ln 2kσ/2 and showed that the soft-
thresholding is the l2-optimal denoising filter in the wavelet domain. Ghael et al.13 proposed Wavelet-domain
Wiener Filter (WWF) as the denoising scheme which can improve the MSE performance of the hard thresholding
method. The wavelet coefficients of the restored image is defined by employing the Wiener filtering on each
wavelet coefficient as follows:

f̃w
i =

|fw
i |2gw

i

|fw
i |2 + σ2

i

. (5)

Here σ2
i denotes the noise variance at the ith wavelet coefficient.

2.3. ForWaRD.
ForWaRD is a two-step method for image restoration problems. The algorithm is given as follows:

ForWaRD Algorithm:

(Step 1) Fourier-domain Wiener filter for deblurring
(a) Estimate |F|2;
(b) Compute the Fourier coefficients G and H from g and H respectively;

(c) Perform the Wiener filtering and obtain F̃ = H∗|F|2G
|H|2|F|2+ασ2 ;

(d) Compute the deblurred image f̃ using inverse Fourier transform;
(Step 2) Wavelet domain denoising

(a) Compute the wavelet coefficient f̃w
i of f̃ ;

(b) Estimate the unknown image f using the hard thresholding method and compute

the wavelet coefficient f
w

i ;

(c) Perform the Wiener filtering in wavelet domain using fw
i =

|fw
i |2f̃w

i

|fw
i |2+σ2

i

;

(d) Compute the inverse wavelet transform with fw
i to obtain the ForWaRD estimate f .

In (c) of Step 1, α is the weighting parameter introduced by Neelamani et al..5 They also developed a
software to employed ForWaRD, in their software, a flat signal spectrum is assumed, the coefficients in Step1(c)
sets

F̃ = KG =
H∗G

|H|2 + τ
, (6)

3. SPATIAL AND WAVELET DOMAIN RESTORATION
Instead of the Wiener filter deblurring, other image deblurring schemes can be employed. Usually, they are
formulated as the minimization of the following energy functional:

‖g − Hf‖22 + reg(f). (7)

Here reg(f) is the regularization functional.1, 14

3.1. Constrained Least Squares (CLS) Restoration.

The CLS restoration method was developed to determine f̂ by solving the following minimization problem:

min
f

‖g − Hf‖22 + α‖Rf‖22. (8)

Here α is called the regularization parameter and R is the regularization matrix. Usually, R is the identity
matrix, in which a minimum norm on f subject to the noise norm equality constraint is sought, or R is the finite
difference matrix, in which case the smoothness of the restored image is enhanced. The least squares solution of
(8) is given by f̂ = (HT H + αRT R)−1HT g, where HT denotes the transpose of the matrix H.
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3.2. Adaptive Regularized Least Squares (ARLS) Restoration.

Though the CLS solution can give a quite good quality restored image, the CLS restoration often introduces
artifacts such as ringing effects near the sharp intensity transition. In ARLS method, several regularization
parameters are employed in the restoration rather than a single parameter in the CLS method. The regularization
functional of the ARLS method is defined as

reg(f) = α‖Rf‖2S = αfTRTSRf , (9)

where S is a diagonal matrix where the main diagonal entries si,i are in (0, 1]. The ARLS solution is given by
f̂ = (HT H + αRT SR)−1HT g. In general, S is defined such that the main diagonal entries si,i are decreasing
functions of the local variances of the original image f . In the smooth regions, we should choose a large value
si,i in order to suppress the noise, while in the highly variation regions, a small value si,i should be taken to
deblur more significantly.1 The weighting coefficients in S can be chosen on the basis of prior knowledge about
the original image in order to minimize the error between the original image and the restored image. Biemond
and Lagendijk proposed the following simple formula to calculate si,i

15:

si,i =





min
i
{σ2

i }
σ2

i





µ

. (10)

Here σ2
i denotes the local variance at the i-th pixel of the original image f and µ is a positive constant. Biemond

and Lagendijk15 found that the value of µ can be set to 0.5 in practical applications. In our experimental results,
we also employ this value to perform the spatial deblurring scheme in our proposed algorithm.

3.3. The Hybrid Spatial and Wavelet Domain Algorithm.

Our proposed algorithm is a two-step method for image restoration problems. The algorithm is given as follows:

Spatial and Wavelet Domains Restoration Algorithm:

(Step 1) Spatial-domain CLS/ARLS for deblurring

(a) Estimate f̂ = Φg;
(For the CLS method, Φ = (HT H + αRT R)−1HT );
(For the ARLS method, Φ = (HT H + αRT SR)−1HT );

(Step 2) Wavelet domain denoising

(a) Compute the wavelet coefficient f̃w
i of f̃ ;

(b) Estimate the unknown image f using the hard thresholding method and compute

the wavelet coefficient f
w

i ;

(c) Perform the Wiener filtering in wavelet domain using fw
i =

|fw
i |2f̃w

i

|fw
i |2+σ2

i

;

(d) Compute the inverse wavelet transform with fw
i to obtain the estimate f .

We remark when we apply the spatial domain ARLS scheme for deblurring, the residual noise becomes non-
stationary. It is important to estimate the variance noise. Assume that complete knowledge of the original image
is f known, then the noise is equal to the difference between the original image f and the estimated image f̂ , i.e.,
the residual noise n̂ = f̂ − f . In practical,the original image f is unknown, we replace it by the pilot image fp
which is obtained by ARLS approach.

4. SIMULATION RESULTS

In this section, we illustrate the performance of our proposed spatial and wavelet domain image restoration
algorithm. The Peak-Signal-to-Noise-Ratio (PSNR) is used to evaluate different methods. The PSNR is defined
by PSNR = 10 log10

||f ||2
||f−̃f ||2 where f and f̃ denote the original image and the restored image respectively, and

the target image is n-by-m. Our codes are written in Matlab. The computational results by the Wiener
filter and the ForWaRD were generated by using the software “ForWaRD” which can be downloaded from
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http://www.dsp.rice.edu. In the software “ForWaRD”, the deblurring scheme is used (6). In our test, the
regularization matrix R is defined as:

R = In ⊗










2 −1 −1
−1 2 −1

. . . . . . . . .
−1 2 −1

−1 −1 2










m

+










2 −1 −1
−1 2 −1

. . . . . . . . .
−1 2 −1

−1 −1 2










n

⊗ Im.

We consider the blur and the noise variance tested by Banham and Katsaggelos2 and by Neelamani et al.5

The 256× 256 image was blurred by a 9× 9-point box-car blur. The additive noise variance σ2 was set such that
the blurred SNR (BSNR) is 30dB, 40dB and 50dB respectively. We compare different algorithms: the Wiener
filter deblurring (Wiener); the ForWaRD algorithm (ForWaRD); the constrained least squares method (CLS);
the hybrid spatial and wavelet domains restoration algorithm using the CLS method (CLS-W); the adaptive
regularization least squares method (ARLS); and the hybrid spatial and wavelet domains restoration algorithm
using the ARLS method (ARLS-W). In the “ARLS” and the “ARLS-W” methods, the corresponding weighting
matrices S are computed by using (10) where µ = 0.5, and the local variances σ2

i are estimated from the restored
images obtained by the CLS method and the CLS-W method respectively.

Four different image are considered in our test, they are: “Cameraman”, “Lenna”, “Boat” and “Theater”.
The PSNRs of the restored images obtained by using different algorithms are summarized in Table 1. In the
table, we test several different regularization parameters in each restoration method, and present the best PSNR
result of each restoration method. We see from Table 1 that the proposed algorithms perform competitively
with ForWaRD. Figure 1 depicts the 256 × 256 “Cameraman” image, the obsevered image with the additive
noise variance σ2 be set such that the SNR is 40dB, and the restoration results for “Cameraman” image using
different algorithms. For the spatial reason, others images don’t show in here.

The second example is tested by Figueiredo andNowak,3 the blurring function is given by

h(i, j) =
1

1 + i2 + j2
for − 7 ≤ i, j ≤ 7 and h(i, j) = 0 otherwise.

The restoration results are summarized in Table 2. As an example, Figure 2 shows the original image, the
observed image and the restored images of “Lenna” using different algorithms. We see from Table 2 and Figure
2 that the proposed algorithms (CLS-W and ARLS-W) perform quite effectively for image restoration.

Table 1. The PSNRs of the restored images by using different algorithms.

Cameraman Lenna Boat Theater
30 dB 40 dB 50 dB 30 dB 40 dB 50 dB 30 dB 40 dB 50dB 30dB 40dB 50dB

Wiener 19.02 20.83 22.92 19.24 20.99 23.12 22.24 23.28 24.93 20.31 22.37 24.39
CLS 18.99 21.07 23.45 19.45 21.49 23.99 22.73 25.56 28.76 20.00 23.17 26.40

ARLS 20.50 22.89 25.69 20.52 22.98 25.90 24.05 26.98 29.50 21.64 24.65 27.18
ForWaRD 20.29 22.61 25.06 20.29 22.54 25.20 23.72 26.11 28.63 21.25 23.87 26.33
CLS-W 20.43 22.79 25.49 20.45 22.91 25.77 24.03 26.67 29.76 21.90 24.62 27.47

ARLS-W 20.84 23.33 26.02 20.71 23.09 26.04 24.40 27.16 29.88 21.93 24.85 27.42

5. CONCLUSION

In this note, we presented other deblurring schemes in ForWaRD for image restoration. In particular, we
studied spatial-domain deblurring methods like constrained least squares restoration and adaptive regularized
least squares restoration. Simulation results show that such two-step method is better than traditional image
restoration methods.
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rj.cc %7:-- flit; -

Noisy image, BSNR =40dBOriginal image

Wiener, PSNR =20.83dB ForWaRD, PSNR =22.61dB

CLS, PSNR =21.09dB CLSW, PSNR =22.82dB

ARLS, PSNR =22.87dB ARLSW, PSNR =23.33dB

Figure 1. The Original image, the blurred and noisy image, the restored images using the Wiener filter, the ForWaRD
with with α = 1.04 × 10−4 the CLS with α = 4.00 × 10−4, the CLS-W with α = 3.20 × 10−5, the ARLS α = 2.50 × 10−2

and the ARLS-W α = 2.50 × 10−2.
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r4cwr

Noisy image, BSNR =40dBOriginal image

Wiener, PSNR =23.05dB ForWaRD, PSNR =26.98dB

CLS, PSNR =25.85dB CLS−W, PSNR =27.6dB

ARLS, PSNR =27.18dB ARLS−W, PSNR =27.38dB

Figure 2. The Original image, the blurred and noisy image, the restored image using the Wiener filter, the ForWaRD with
with α = 6.71× 10−3, using the CLS with α = 9.31× 10−3, the CLS-W with α = 1.86× 10−5, the ARLS α = 1.24× 10−2

and the ARLS-W α = 1.24 × 10−2.
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Table 2. The PSNRs of the restored images by using different algorithms.

Cameraman Lenna Boat Theater
30 dB 40 dB 50 dB 30 dB 40 dB 50 dB 30 dB 40 dB 50dB 30dB 40dB 50dB

Wiener 15.63 21.16 28.25 15.85 23.05 28.66 17.89 23.34 30.24 17.32 23.20 30.05
CLS 21.54 24.88 30.01 22.58 25.85 30.57 25.33 29.04 34.37 23.38 27.55 32.83

ARLS 23.01 20.57 31.63 23.55 27.18 31.08 26.18 30.10 35.12 24.22 28.23 33.31
ForWaRD 22.42 26.78 32.16 23.31 26.98 31.90 26.04 29.80 35.35 23.85 27.56 33.05
CLS-W 23.37 27.12 32.39 23.91 27.60 32.13 26.83 30.83 35.74 24.79 28.77 33.55

ARLS-W 21.08 25.58 32.58 22.17 27.38 32.20 24.77 30.66 35.69 22.16 28.47 33.69
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