46,774 research outputs found

    Knowledge and technology transfer from universities to industries: A case study approach from the built environment field

    Get PDF
    Enabling kowledge societies and knowledge based economies is a key policy in the UK. KTP (Knowledge Transfer Partnership) scheme initiated by the Technology Strategy Board is a pathway for collaboration and partnerships between Higher Education institutions and companies to transfer innovative knowledge based solutions from universities to businesses in order to equip them with the leading edge knowledge and technology infrastructure for sustainable long term competitive advantages in both national and international market. The paper explains a KTP project between the University of Salford and John McCall Architects (JMA) in Liverpool in the UK that aimed to identify, map and re-engineer JMA’s strategic and operational change processes through Lean thinking and the implementation of Building Information Modelling (BIM), which is a foundational tool for implementing an efficient process and invariably leads to lean-orientated, team based approach to design and construction by enabling the intelligent interrogation of designs; provide a quicker and cheaper design production; better co-ordination of documentation; more effective change control; less repetition of processes; a better quality constructed product; and improved communication both for JMA and across the supply chain whereas it provided opportunity to increase business relevance of knowledge based research and teaching for the Higher Education. Case Study approach is employed in the paper and the KTP project is assessed for i) how it helped in improving JMA’s knowledge and technology capacity in conducting their practice, and, ii) how it helped the university in improving its knowledge based research and teaching

    Practitioner requirements for integrated Knowledge-Based Engineering in Product Lifecycle Management.

    No full text
    The effective management of knowledge as capital is considered essential to the success of engineering product/service systems. As Knowledge Management (KM) and Product Lifecycle Management (PLM) practice gain industrial adoption, the question of functional overlaps between both the approaches becomes evident. This article explores the interoperability between PLM and Knowledge-Based Engineering (KBE) as a strategy for engineering KM. The opinion of key KBE/PLM practitioners are systematically captured and analysed. A set of ranked business functionalities to be fulfiled by the KBE/PLM systems integration is elicited. The article provides insights for the researchers and the practitioners playing both the user and development roles on the future needs for knowledge systems based on PLM

    Linking design and manufacturing domains via web-based and enterprise integration technologies

    Get PDF
    The manufacturing industry faces many challenges such as reducing time-to-market and cutting costs. In order to meet these increasing demands, effective methods are need to support the early product development stages by bridging the gap of communicating early design ideas and the evaluation of manufacturing performance. This paper introduces methods of linking design and manufacturing domains using disparate technologies. The combined technologies include knowledge management supporting for product lifecycle management (PLM) systems, enterprise resource planning (ERP) systems, aggregate process planning systems, workflow management and data exchange formats. A case study has been used to demonstrate the use of these technologies, illustrated by adding manufacturing knowledge to generate alternative early process plan which are in turn used by an ERP system to obtain and optimise a rough-cut capacity plan

    Eco Global Evaluation: Cross Benefits of Economic and Ecological Evaluation

    Get PDF
    This paper highlights the complementarities of cost and environmental evaluation in a sustainable approach. Starting with the needs and limits for whole product lifecycle evaluation, this paper begins with the modeling, data capture and performance indicator aspects. In a second step, the information issue, regarding the whole lifecycle of the product is addressed. In order to go further than the economical evaluations/assessment, the value concept (for a product or a service) is discussed. Value could combine functional requirements, cost objectives and environmental impact. Finally, knowledge issues which address the complexity of integrating multi-disciplinary expertise to the whole lifecycle of a product are discussing.EcoSD NetworkEcoSD networ

    Requirements engineering for computer integrated environments in construction

    Get PDF
    A Computer Integrated Environment (CIE) is the type of innovative integrated information system that helps to reduce fragmentation and enables the stakeholders to collaborate together in business. Researchers have observed that the concept of CIE has been the subject of research for many years but the uptake of this technology has been very limited because of the development of the technology and its effective implementation. Although CIE is very much valued by both industrialists and academics, the answers to the question of how to develop and how to implement it are still not clear. The industrialists and researchers conveyed that networking, collaboration, information sharing and communication will become popular and critical issues in the future, which can be managed through CIE systems. In order for successful development of the technology, successful delivery, and effective implementation of user and industry-oriented CIE systems, requirements engineering seems a key parameter. Therefore, through experiences and lessons learnt in various case studies of CIE systems developments, this book explains the development of a requirements engineering framework specific to the CIE system. The requirements engineering process that has been developed in the research is targeted at computer integrated environments with a particular interest in the construction industry as the implementation field. The key features of the requirements engineering framework are the following: (1) ready-to-use, (2) simple, (3) domain specific, (4) adaptable and (5) systematic, (6) integrated with the legacy systems. The method has three key constructs: i) techniques for requirements development, which includes the requirement elicitation, requirements analysis/modelling and requirements validation, ii) requirements documentation and iii) facilitating the requirements management. It focuses on system development methodologies for the human driven ICT solutions that provide communication, collaboration, information sharing and exchange through computer integrated environments for professionals situated in discrete locations but working in a multidisciplinary and interdisciplinary environment. The overview for each chapter of the book is as follows; Chapter 1 provides an overview by setting the scene and presents the issues involved in requirements engineering and CIE (Computer Integrated Environments). Furthermore, it makes an introduction to the necessity for requirements engineering for CIE system development, experiences and lessons learnt cumulatively from CIE systems developments that the authors have been involved in, and the process of the development of an ideal requirements engineering framework for CIE systems development, based on the experiences and lessons learnt from the multi-case studies. Chapter 2 aims at building up contextual knowledge to acquire a deeper understanding of the topic area. This includes a detailed definition of the requirements engineering discipline and the importance and principles of requirements engineering and its process. In addition, state of the art techniques and approaches, including contextual design approach, the use case modelling, and the agile requirements engineering processes, are explained to provide contextual knowledge and understanding about requirements engineering to the readers. After building contextual knowledge and understanding about requirements engineering in chapter 2, chapter 3 attempts to identify a scope and contextual knowledge and understanding about computer integrated environments and Building Information Modelling (BIM). In doing so, previous experiences of the authors about systems developments for computer integrated environments are explained in detail as the CIE/BIM case studies. In the light of contextual knowledge gained about requirements engineering in chapter 2, in order to realize the critical necessity of requirements engineering to combine technology, process and people issues in the right balance, chapter 4 will critically evaluate the requirements engineering activities of CIE systems developments that are explained in chapter 3. Furthermore, to support the necessity of requirements engineering for human centred CIE systems development, the findings from semi-structured interviews are shown in a concept map that is also explained in this chapter. In chapter 5, requirements engineering is investigated from different angles to pick up the key issues from discrete research studies and practice such as traceability through process and product modelling, goal-oriented requirements engineering, the essential and incidental complexities in requirements models, the measurability of quality requirements, the fundamentals of requirements engineering, identifying and involving the stakeholders, reconciling software requirements and system architectures and barriers to the industrial uptake of requirements engineering. In addition, a comprehensive research study measuring the success of requirements engineering processes through a set of evaluation criteria is introduced. Finally, the key issues and the criteria are comparatively analyzed and evaluated in order to match each other and confirm the validity of the criteria for the evaluation and assessment of the requirements engineering implementation in the CIE case study projects in chapter 7 and the key issues will be used in chapter 9 to support the CMM (Capability Maturity Model) for acceptance and wider implications of the requirements engineering framework to be proposed in chapter 8. Chapter 6 explains and particularly focuses on how the requirements engineering activities in the case study projects were handled by highlighting strengths and weaknesses. This will also include the experiences and lessons learnt from these system development practices. The findings from these developments will also be utilized to support the justification of the necessity of a requirements engineering framework for the CIE systems developments. In particular, the following are addressed. ‱ common and shared understanding in requirements engineering efforts, ‱ continuous improvement, ‱ outputs of requirement engineering ‱ reflections and the critical analysis of the requirements engineering approaches in these practices. The premise of chapter 7 is to evaluate and assess the requirements engineering approaches in the CIE case study developments from multiple viewpoints in order to find out the strengths and the weaknesses in these requirements engineering processes. This evaluation will be mainly based on the set of criteria developed by the researchers and developers in the requirements engineering community in order to measure the success rate of the requirements engineering techniques after their implementation in the various system development projects. This set of criteria has already been introduced in chapter 5. This critical assessment includes conducting a questionnaire based survey and descriptive statistical analysis. In chapter 8, the requirements engineering techniques tested in the CIE case study developments are composed and compiled into a requirements engineering process in the light of the strengths and the weaknesses identified in the previous chapter through benchmarking with a Capability Maturity Model (CMM) to ensure that it has the required level of maturity for implementation in the CIE systems developments. As a result of this chapter, a framework for a generic requirements engineering process for CIE systems development will be proposed. In chapter 9, the authors will discuss the acceptance and the wider implications of the proposed framework of requirements engineering process using the CMM from chapter 8 and the key issues from chapter 5. Chapter 10 is the concluding chapter and it summarizes the findings and brings the book to a close with recommendations for the implementation of the Proposed RE framework and also prescribes a guideline as a way forward for better implementation of requirements engineering for successful developments of the CIE systems in the future

    Construction informatics in Turkey: strategic role of ICT and future research directions

    Get PDF
    Construction Informatics deals with subjects ranging from strategic management of ICTs to interoperability and information integration in the construction industry. Studies on defining research directions for Construction Informatics have a history over 20 years. The recent studies in the area highlight the priority themes for Construction Informatics research as interoperability, collaboration support, intelligent sites and knowledge sharing. In parallel, today it is widely accepted in the Architecture/Engineering/Construction (AEC) industry that ICT is becoming a strategic asset for any organisation to deliver business improvement and achieve sustainable competitive advantage. However, traditionally the AEC industry has approached investing in ICT with a lack of strategic focus and low level of priority to the business. This paper presents a recent study from Turkey that is focused on two themes. The first theme investigates the strategic role of ICT implementations from an industrial perspective, and explores if organisations within the AEC industry view ICT as a strategic resource for their business practice. The second theme investigates the ‘perspective of academia’ in terms of future research directions of Construction Informatics. The results of the industrial study indicates that ICT is seen as a value-adding resource, but a shift towards the recognition of the importance of ICT in terms of value adding in winning work and achieving strategic competitive advantage is observed. On the other hand, ICT Training is found to be the theme of highest priority from the academia point of view

    PLM and early stages collaboration in interactive design, a case study in the glass industry

    Get PDF
    Product design activity is traditionally presented as a succession of four to six stages. In the early stages of design, during the search for concepts, multi-disciplinary teams are working together, sometimes on the fringe of the digital design chain. But it is during these stages, that most of the product development cost is committed. Therefore, collaboration should be emphasized, and PLM software should contribute to it strongly. This paper first defines the boundaries of the early stages of design. Then, we analyze designer collaboration in this stage and describe the knowledge necessary for efficient collaboration. Finally, we propose and test a concept for a tool to assist the early stages of design, to be integrated in a continuum with other existing digital design tools. A case study is presented in Verallia, specialized in the design and manufacturing of glassware

    Towards an ontology-based platform-independent framework for developing KBE systems in the aerospace industry

    Get PDF
    Aerospace engineering is considered to be one of the most complex and advanced branches of engineering. The use of knowledge based engineering (KBE) technologies has played a major role in automating routine design activities in view of supporting the cost-effective and timely development of a product. However, technologies employed within KBE systems are usually platform-specific. The nature of these platform-specific models has significantly limited knowledge abstraction and reusability in KBE systems. This research paper presents a novel approach that illustrates the use of platform-independent knowledge models for the development of KBE systems in the aerospace industry. The use of semantic technologies through the definition of generic-purposed ontologies has been employed to support the notion of independent knowledge models that strengthens knowledge reusability in KBE systems. This approach has been validated qualitatively through experts’ opinion and its benefit realised in the abstraction, reusability and maintainability of KBE systems

    Problem solving methods as Lessons Learned System instrumentation into a PLM tool

    Get PDF
    Among the continuous improvement tools of the performance in enterprise, the experience feedback represents undoubtedly an effective lever of progress by offering important prospects for a progression in almost all the industrial sectors. However, several reserves to its use slow down the diffusion of its employment. We are interested in the installation of experience feedback system in a partner enterprise. In this paper, we propose an instrumentation of a Lessons Learned System (LLS) by problem solving methods (PSM) and its integration with a product lifecycle management (PLM). These proposals support an improvement of LLS performance and a facility of his application
    • 

    corecore