10 research outputs found

    Circuit Techniques for Adaptive and Reliable High Performance Computing.

    Full text link
    Increasing power density with process scaling has caused stagnation in the clock speed of modern microprocessors. Accordingly, designers have adopted message passing and shared memory based multicore architectures in order to keep up with the rapidly rising demand for computing throughput. At the same time, applications are not entirely parallel and improving single-thread performance continues to remain critical. Additionally, reliability is also worsening with process scaling, and margining for failures due to process and environmental variations in modern technologies consumes an increasingly large portion of the power/performance envelope. In the wake of multicore computing, reliability of signal synchronization between the cores is also becoming increasingly critical. This forces designers to search for alternate efficient methods to improve compute performance while addressing reliability. Accordingly, this dissertation presents innovative circuit and architectural techniques for variation-tolerance, performance and reliability targeted at datapath logic, signal synchronization and memories. Firstly, a domino logic based design style for datapath logic is presented that uses Adaptive Robustness Tuning (ART) in addition to timing speculation to provide up to 71% performance gains over conventional domino logic in 32bx32b multiplier in 65nm CMOS. Margins are reduced until functionality errors are detected, that are used to guide the tuning. Secondly, for signal synchronization across clock domains, a new class of dynamic logic based synchronizers with single-cycle synchronization latency is presented, where pulses, rather than stable intermediate voltages cause metastability. Such pulses are amplified using skewed inverters to improve mean time between failures by ~1e6x over jamb latches and double flip-flops at 2GHz in 65nm CMOS. Thirdly, a reconfigurable sensing scheme for 6T SRAMs is presented that employs auto-zero calibration and pre-amplification to improve sensing reliability (by up to 1.2 standard deviations of NMOS threshold voltage in 28nm CMOS); this increased reliability is in turn traded for ~42% sensing speedup. Finally, a main memory architecture design methodology to address reliability and power in the context of Exascale computing systems is presented. Based on 3D-stacked DRAMs, the methodology co-optimizes DRAM access energy, refresh power and the increased cost of error resilience, to meet stringent power and reliability constraints.PhDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/107238/1/bharan_1.pd

    Dependable Embedded Systems

    Get PDF
    This Open Access book introduces readers to many new techniques for enhancing and optimizing reliability in embedded systems, which have emerged particularly within the last five years. This book introduces the most prominent reliability concerns from today’s points of view and roughly recapitulates the progress in the community so far. Unlike other books that focus on a single abstraction level such circuit level or system level alone, the focus of this book is to deal with the different reliability challenges across different levels starting from the physical level all the way to the system level (cross-layer approaches). The book aims at demonstrating how new hardware/software co-design solution can be proposed to ef-fectively mitigate reliability degradation such as transistor aging, processor variation, temperature effects, soft errors, etc. Provides readers with latest insights into novel, cross-layer methods and models with respect to dependability of embedded systems; Describes cross-layer approaches that can leverage reliability through techniques that are pro-actively designed with respect to techniques at other layers; Explains run-time adaptation and concepts/means of self-organization, in order to achieve error resiliency in complex, future many core systems

    Advanced information processing system: The Army fault tolerant architecture conceptual study. Volume 2: Army fault tolerant architecture design and analysis

    Get PDF
    Described here is the Army Fault Tolerant Architecture (AFTA) hardware architecture and components and the operating system. The architectural and operational theory of the AFTA Fault Tolerant Data Bus is discussed. The test and maintenance strategy developed for use in fielded AFTA installations is presented. An approach to be used in reducing the probability of AFTA failure due to common mode faults is described. Analytical models for AFTA performance, reliability, availability, life cycle cost, weight, power, and volume are developed. An approach is presented for using VHSIC Hardware Description Language (VHDL) to describe and design AFTA's developmental hardware. A plan is described for verifying and validating key AFTA concepts during the Dem/Val phase. Analytical models and partial mission requirements are used to generate AFTA configurations for the TF/TA/NOE and Ground Vehicle missions

    Miniature high dynamic range time-resolved CMOS SPAD image sensors

    Get PDF
    Since their integration in complementary metal oxide (CMOS) semiconductor technology in 2003, single photon avalanche diodes (SPADs) have inspired a new era of low cost high integration quantum-level image sensors. Their unique feature of discerning single photon detections, their ability to retain temporal information on every collected photon and their amenability to high speed image sensor architectures makes them prime candidates for low light and time-resolved applications. From the biomedical field of fluorescence lifetime imaging microscopy (FLIM) to extreme physical phenomena such as quantum entanglement, all the way to time of flight (ToF) consumer applications such as gesture recognition and more recently automotive light detection and ranging (LIDAR), huge steps in detector and sensor architectures have been made to address the design challenges of pixel sensitivity and functionality trade-off, scalability and handling of large data rates. The goal of this research is to explore the hypothesis that given the state of the art CMOS nodes and fabrication technologies, it is possible to design miniature SPAD image sensors for time-resolved applications with a small pixel pitch while maintaining both sensitivity and built -in functionality. Three key approaches are pursued to that purpose: leveraging the innate area reduction of logic gates and finer design rules of advanced CMOS nodes to balance the pixel’s fill factor and processing capability, smarter pixel designs with configurable functionality and novel system architectures that lift the processing burden off the pixel array and mediate data flow. Two pathfinder SPAD image sensors were designed and fabricated: a 96 × 40 planar front side illuminated (FSI) sensor with 66% fill factor at 8.25μm pixel pitch in an industrialised 40nm process and a 128 × 120 3D-stacked backside illuminated (BSI) sensor with 45% fill factor at 7.83μm pixel pitch. Both designs rely on a digital, configurable, 12-bit ripple counter pixel allowing for time-gated shot noise limited photon counting. The FSI sensor was operated as a quanta image sensor (QIS) achieving an extended dynamic range in excess of 100dB, utilising triple exposure windows and in-pixel data compression which reduces data rates by a factor of 3.75×. The stacked sensor is the first demonstration of a wafer scale SPAD imaging array with a 1-to-1 hybrid bond connection. Characterisation results of the detector and sensor performance are presented. Two other time-resolved 3D-stacked BSI SPAD image sensor architectures are proposed. The first is a fully integrated 5-wire interface system on chip (SoC), with built-in power management and off-focal plane data processing and storage for high dynamic range as well as autonomous video rate operation. Preliminary images and bring-up results of the fabricated 2mm² sensor are shown. The second is a highly configurable design capable of simultaneous multi-bit oversampled imaging and programmable region of interest (ROI) time correlated single photon counting (TCSPC) with on-chip histogram generation. The 6.48μm pitch array has been submitted for fabrication. In-depth design details of both architectures are discussed

    A Parallel Processor System for Nuclear Shell-Model Calculations

    Get PDF
    This thesis describes the design and implementation of a dedicated parallel processor system for nuclear shell-model calculations. The purpose of these calculations is to determine nuclear energy eigenvalues by the tridiagonalisation of the nuclear Hamiltonian matrix using the Lanczos method. The Theoretical Nuclear Structure group at Glasgow University's Physics Department would normally perform this type of calculation on a high-performance main-frame computer. However these machines have limitations which restrict the number and scope of the calculations that can be performed. The Shell Model Processor system consists of a Multiple Microprocessor Unit (MMPU) driven by a highly pipelined dedicated front-end processor. The MMPU has a modular, moderately coupled, MIMD architecture based on autonomous processing modules. The elements within the system communicate via three shared buses. The front-end is responsible for determining the position of non-zero elements within the Hamiltonian matrix. Once the position of an element has been found it is passed to one of the free processing modules within the MMPU. The processing module then determines the value of the matrix element and performs the appropriate arithmetic to accumulate the resultant Lanczos vector. Two such processing modules have been developed. The most recently developed module is based on two MC68000 16/32 bit microprocessors. In addition there are two supervisory processor modules, one of which controls the front-end and also assists it in its function. The other module has privileged system capabilities and is responsible for supervising the system as a whole. The system has been successfully tested and performance figures are presented. The future expansion of the system to allow it to perform larger calculations is also discussed

    CMOS SPAD-based image sensor for single photon counting and time of flight imaging

    Get PDF
    The facility to capture the arrival of a single photon, is the fundamental limit to the detection of quantised electromagnetic radiation. An image sensor capable of capturing a picture with this ultimate optical and temporal precision is the pinnacle of photo-sensing. The creation of high spatial resolution, single photon sensitive, and time-resolved image sensors in complementary metal oxide semiconductor (CMOS) technology offers numerous benefits in a wide field of applications. These CMOS devices will be suitable to replace high sensitivity charge-coupled device (CCD) technology (electron-multiplied or electron bombarded) with significantly lower cost and comparable performance in low light or high speed scenarios. For example, with temporal resolution in the order of nano and picoseconds, detailed three-dimensional (3D) pictures can be formed by measuring the time of flight (TOF) of a light pulse. High frame rate imaging of single photons can yield new capabilities in super-resolution microscopy. Also, the imaging of quantum effects such as the entanglement of photons may be realised. The goal of this research project is the development of such an image sensor by exploiting single photon avalanche diodes (SPAD) in advanced imaging-specific 130nm front side illuminated (FSI) CMOS technology. SPADs have three key combined advantages over other imaging technologies: single photon sensitivity, picosecond temporal resolution and the facility to be integrated in standard CMOS technology. Analogue techniques are employed to create an efficient and compact imager that is scalable to mega-pixel arrays. A SPAD-based image sensor is described with 320 by 240 pixels at a pitch of 8μm and an optical efficiency or fill-factor of 26.8%. Each pixel comprises a SPAD with a hybrid analogue counting and memory circuit that makes novel use of a low-power charge transfer amplifier. Global shutter single photon counting images are captured. These exhibit photon shot noise limited statistics with unprecedented low input-referred noise at an equivalent of 0.06 electrons. The CMOS image sensor (CIS) trends of shrinking pixels, increasing array sizes, decreasing read noise, fast readout and oversampled image formation are projected towards the formation of binary single photon imagers or quanta image sensors (QIS). In a binary digital image capture mode, the image sensor offers a look-ahead to the properties and performance of future QISs with 20,000 binary frames per second readout with a bit error rate of 1.7 x 10-3. The bit density, or cumulative binary intensity, against exposure performance of this image sensor is in the shape of the famous Hurter and Driffield densitometry curves of photographic film. Oversampled time-gated binary image capture is demonstrated, capturing 3D TOF images with 3.8cm precision in a 60cm range

    Third International Symposium on Space Mission Operations and Ground Data Systems, part 1

    Get PDF
    Under the theme of 'Opportunities in Ground Data Systems for High Efficiency Operations of Space Missions,' the SpaceOps '94 symposium included presentations of more than 150 technical papers spanning five topic areas: Mission Management, Operations, Data Management, System Development, and Systems Engineering. The papers focus on improvements in the efficiency, effectiveness, productivity, and quality of data acquisition, ground systems, and mission operations. New technology, techniques, methods, and human systems are discussed. Accomplishments are also reported in the application of information systems to improve data retrieval, reporting, and archiving; the management of human factors; the use of telescience and teleoperations; and the design and implementation of logistics support for mission operations

    GSI Scientific Report 2010 [GSI Report 2011-1]

    Get PDF

    GSI Scientific Report 2011 [GSI Report 2012-1]

    Get PDF
    corecore