12,910 research outputs found

    A network approach for power grid robustness against cascading failures

    Get PDF
    Cascading failures are one of the main reasons for blackouts in electrical power grids. Stable power supply requires a robust design of the power grid topology. Currently, the impact of the grid structure on the grid robustness is mainly assessed by purely topological metrics, that fail to capture the fundamental properties of the electrical power grids such as power flow allocation according to Kirchhoff's laws. This paper deploys the effective graph resistance as a metric to relate the topology of a grid to its robustness against cascading failures. Specifically, the effective graph resistance is deployed as a metric for network expansions (by means of transmission line additions) of an existing power grid. Four strategies based on network properties are investigated to optimize the effective graph resistance, accordingly to improve the robustness, of a given power grid at a low computational complexity. Experimental results suggest the existence of Braess's paradox in power grids: bringing an additional line into the system occasionally results in decrease of the grid robustness. This paper further investigates the impact of the topology on the Braess's paradox, and identifies specific sub-structures whose existence results in Braess's paradox. Careful assessment of the design and expansion choices of grid topologies incorporating the insights provided by this paper optimizes the robustness of a power grid, while avoiding the Braess's paradox in the system.Comment: 7 pages, 13 figures conferenc

    Spatially self-organized resilient networks by a distributed cooperative mechanism

    Get PDF
    The robustness of connectivity and the efficiency of paths are incompatible in many real networks. We propose a self-organization mechanism for incrementally generating onion-like networks with positive degree-degree correlations whose robustness is nearly optimal. As a spatial extension of the generation model based on cooperative copying and adding shortcut, we show that the growing networks become more robust and efficient through enhancing the onion-like topological structure on a space. The reasonable constraint for locating nodes on the perimeter in typical surface growth as a self-propagation does not affect these properties of the tolerance and the path length. Moreover, the robustness can be recovered in the random growth damaged by insistent sequential attacks even without any remedial measures.Comment: 34 pages, 12 figures, 2 table

    Robust capacitated trees and networks with uniform demands

    Full text link
    We are interested in the design of robust (or resilient) capacitated rooted Steiner networks in case of terminals with uniform demands. Formally, we are given a graph, capacity and cost functions on the edges, a root, a subset of nodes called terminals, and a bound k on the number of edge failures. We first study the problem where k = 1 and the network that we want to design must be a tree covering the root and the terminals: we give complexity results and propose models to optimize both the cost of the tree and the number of terminals disconnected from the root in the worst case of an edge failure, while respecting the capacity constraints on the edges. Second, we consider the problem of computing a minimum-cost survivable network, i.e., a network that covers the root and terminals even after the removal of any k edges, while still respecting the capacity constraints on the edges. We also consider the possibility of protecting a given number of edges. We propose three different formulations: a cut-set based formulation, a flow based one, and a bilevel one (with an attacker and a defender). We propose algorithms to solve each formulation and compare their efficiency
    • …
    corecore