430 research outputs found

    Towards an occupant based conceptual model: case of the natural luminous ambience.

    Get PDF
    Dealing with thoughts based on the ambience notion, the present research work makes for a contribution consisting on the development of an occupant based model for the natural luminous ambience. One of the ambience notion virtues is the supply of the architectural research with specific to architecture theoretical bases whilst preserving its links to other fields with an environmental spirit. This notion provides new components for the study of the environmental physical stimuli within the built spaces that is the requirement of the plurisensoriality. Hence, the proposed conceptual model will be beyond the conventional ones because it associates the context particularities, the luminous environment and the architectural space to the user. An office building from an eastsouthern Algerian city under a clear sunny has been chosen as a case study to apply this conceptual model. The field research work proves the feasibility of the model and indicates the hierarchy of the hypothesized relationships but also reveals the unsuitability of some statistical analysis methods

    Daylighting design for energy saving in a building global energy simulation context

    Get PDF
    A key factor to substantially reduce the energy consumption for electric lighting consists in a more widespread exploitation of daylight, associated with the use of the most energy efficient lighting technologies, including LEDs or electric lighting controls. At the same time daylight harvesting in indoor spaces can influence the global energy performance of a building also in terms of heating and cooling loads. For this reason, it’s always necessary to account for the balance between daylighting benefits and energy requirements. Furthermore the increasing awareness of the potential benefits of daylight has resulted in an increased need for objective information and data on the impact that different design solutions, in terms of architectural features, can have on the daylighting condition and energy demand of a space. Within this frame the research activity has been focusing on three main aspects: − Analyzing limits and potentials of the current daylighting design practice and proposing synthetic information and tools to be used by the design team during the earliest design stage to predict the daylight condition within a space. − Analyzing the effect of a proper daylighting design approach on energy requirements for electric lighting, associating with the use of efficient lighting technologies and control systems. − Assessing the influence of energy demand for electric lighting on the global energy performance. The methodology that was adopted relies on dynamic simulations carried out with Daysim and EnergyPlus used in synergy to perform a parametric study to assess the indoor daylighting conditions and the energy performance of rooms with different architectural features. Within the first phase the database of results of the lighting analysis was used to assess the sensitivity of new metrics which have been proposed by the scientific community as predictors of the dynamic variation of daylight. Furthermore it was analyzed how indoor daylight can be influenced by room’s architectural features. Than the energy demand for electric lighting for all simulated case studies have been analyzed so as to examine the influence of a proper daylighting design in presence of different lighting control systems. Finally results related to the amount of daylight available in a space were compared with annual energy demand for lighting, heating and cooling to highlight the influence of a proper daylighting design on the global energy performance

    ReLiShaft: realistic real-time light shaft generation taking sky illumination into account

    Get PDF
    © 2018 The Author(s) Rendering atmospheric phenomena is known to have its basis in the fields of atmospheric optics and meteorology and is increasingly used in games and movies. Although many researchers have focused on generating and enhancing realistic light shafts, there is still room for improvement in terms of both qualification and quantification. In this paper, a new technique, called ReLiShaft, is presented to generate realistic light shafts for outdoor rendering. In the first step, a realistic light shaft with respect to the sun position and sky colour in any specific location, date and time is constructed in real-time. Then, Hemicube visibility-test radiosity is employed to reveal the effect of a generated sky colour on environments. Two different methods are considered for indoor and outdoor rendering, ray marching based on epipolar sampling for indoor environments, and filtering on regular epipolar of z-partitioning for outdoor environments. Shadow maps and shadow volumes are integrated to consider the computational costs. Through this technique, the light shaft colour is adjusted according to the sky colour in any specific location, date and time. The results show different light shaft colours in different times of day in real-time

    Precision daylight and thermal modelling of shading devices.

    Get PDF

    Defining Reality in Virtual Reality: Exploring Visual Appearance and Spatial Experience Focusing on Colour

    Get PDF
    Today, different actors in the design process have communication difficulties in visualizing and predictinghow the not yet built environment will be experienced. Visually believable virtual environments (VEs) can make it easier for architects, users and clients to participate in the planning process. This thesis deals with the difficulties of translating reality into digital counterparts, focusing on visual appearance(particularly colour) and spatial experience. The goal is to develop knowledge of how differentaspects of a VE, especially light and colour, affect the spatial experience; and thus to contribute to a better understanding of the prerequisites for visualizing believable spatial VR-models. The main aims are to 1) identify problems and test solutions for simulating realistic spatial colour and light in VR; and 2) develop knowledge of the spatial conditions in VR required to convey believable experiences; and evaluate different ways of visualizing spatial experiences. The studies are conducted from an architecturalperspective; i.e. the whole of the spatial settings is considered, which is a complex task. One important contribution therefore concerns the methodology. Different approaches were used: 1) a literature review of relevant research areas; 2) a comparison between existing studies on colour appearance in 2D vs 3D; 3) a comparison between a real room and different VR-simulations; 4) elaborationswith an algorithm for colour correction; 5) reflections in action on a demonstrator for correct appearance and experience; and 6) an evaluation of texture-styles with non-photorealistic expressions. The results showed various problems related to the translation and comparison of reality to VR. The studies pointed out the significance of inter-reflections; colour variations; perceived colour of light and shadowing for the visual appearance in real rooms. Some differences in VR were connected to arbitrary parameter settings in the software; heavily simplified chromatic information on illumination; and incorrectinter-reflections. The models were experienced differently depending on the application. Various spatial differences between reality and VR could be solved by visual compensation. The study with texture-styles pointed out the significance of varying visual expressions in VR-models

    Defining Reality in Virtual Reality: Exploring Visual Appearance and Spatial Experience Focusing on Colour

    Get PDF
    Today, different actors in the design process have communication difficulties in visualizing and predictinghow the not yet built environment will be experienced. Visually believable virtual environments (VEs) can make it easier for architects, users and clients to participate in the planning process. This thesis deals with the difficulties of translating reality into digital counterparts, focusing on visual appearance(particularly colour) and spatial experience. The goal is to develop knowledge of how differentaspects of a VE, especially light and colour, affect the spatial experience; and thus to contribute to a better understanding of the prerequisites for visualizing believable spatial VR-models. The main aims are to 1) identify problems and test solutions for simulating realistic spatial colour and light in VR; and 2) develop knowledge of the spatial conditions in VR required to convey believable experiences; and evaluate different ways of visualizing spatial experiences. The studies are conducted from an architecturalperspective; i.e. the whole of the spatial settings is considered, which is a complex task. One important contribution therefore concerns the methodology. Different approaches were used: 1) a literature review of relevant research areas; 2) a comparison between existing studies on colour appearance in 2D vs 3D; 3) a comparison between a real room and different VR-simulations; 4) elaborationswith an algorithm for colour correction; 5) reflections in action on a demonstrator for correct appearance and experience; and 6) an evaluation of texture-styles with non-photorealistic expressions. The results showed various problems related to the translation and comparison of reality to VR. The studies pointed out the significance of inter-reflections; colour variations; perceived colour of light and shadowing for the visual appearance in real rooms. Some differences in VR were connected to arbitrary parameter settings in the software; heavily simplified chromatic information on illumination; and incorrectinter-reflections. The models were experienced differently depending on the application. Various spatial differences between reality and VR could be solved by visual compensation. The study with texture-styles pointed out the significance of varying visual expressions in VR-models
    corecore