3 research outputs found

    Method Based on Edge Constraint and Fast Marching for Road Centerline Extraction from Very High-Resolution Remote Sensing Images

    No full text
    In recent decades, road extraction from very high-resolution (VHR) remote sensing images has become popular and has attracted extensive research efforts. However, the very high spatial resolution, complex urban structure, and contextual background effect of road images complicate the process of road extraction. For example, shadows, vehicles, or other objects may occlude a road located in a developed urban area. To address the problem of occlusion, this study proposes a semiautomatic approach for road extraction from VHR remote sensing images. First, guided image filtering is employed to reduce the negative effects of nonroad pixels while preserving edge smoothness. Then, an edge-constraint-based weighted fusion model is adopted to trace and refine the road centerline. An edge-constraint fast marching method, which sequentially links discrete seed points, is presented to maintain road-point connectivity. Six experiments with eight VHR remote sensing images (spatial resolution of 0.3 m/pixel to 2 m/pixel) are conducted to evaluate the efficiency and robustness of the proposed approach. Compared with state-of-the-art methods, the proposed approach presents superior extraction quality, time consumption, and seed-point requirements

    Very High Resolution (VHR) Satellite Imagery: Processing and Applications

    Get PDF
    Recently, growing interest in the use of remote sensing imagery has appeared to provide synoptic maps of water quality parameters in coastal and inner water ecosystems;, monitoring of complex land ecosystems for biodiversity conservation; precision agriculture for the management of soils, crops, and pests; urban planning; disaster monitoring, etc. However, for these maps to achieve their full potential, it is important to engage in periodic monitoring and analysis of multi-temporal changes. In this context, very high resolution (VHR) satellite-based optical, infrared, and radar imaging instruments provide reliable information to implement spatially-based conservation actions. Moreover, they enable observations of parameters of our environment at greater broader spatial and finer temporal scales than those allowed through field observation alone. In this sense, recent very high resolution satellite technologies and image processing algorithms present the opportunity to develop quantitative techniques that have the potential to improve upon traditional techniques in terms of cost, mapping fidelity, and objectivity. Typical applications include multi-temporal classification, recognition and tracking of specific patterns, multisensor data fusion, analysis of land/marine ecosystem processes and environment monitoring, etc. This book aims to collect new developments, methodologies, and applications of very high resolution satellite data for remote sensing. The works selected provide to the research community the most recent advances on all aspects of VHR satellite remote sensing
    corecore