436,741 research outputs found

    A hard metallic material: Osmium Diboride

    Full text link
    We calculate the structural and electronic properties of OsB2 using density functional theory with or without taking into account spin-orbit (SO) interaction. Our results show that the bulk modulus with and without SO interaction are 364 and 365 Gpa respectively, both are in good agreement with experiment (365-395 Gpa). The evidence of covalent bonding of Os-B, which plays an important role to form a hard material, is indicated both in charge density, atoms in molecules analysis, and density of states analysis. The good metallicity and hardness of OsB2 might suggest its potential application as hard conductors.Comment: Figures improve

    Collective charge fluctuations and Casimir interactions for quasi one-dimensional metals

    Full text link
    We investigate the Casimir interaction between two parallel metallic cylinders and between a metallic cylinder and plate. The material properties of the metallic objects are implemented by the plasma, Drude and perfect metal model dielectric functions. We calculate the Casimir interaction numerically at all separation distances and analytically at large separations. The large-distance asymptotic interaction between one plasma cylinder parallel to another plasma cylinder or plate does not depend on the material properties, but for a Drude cylinder it depends on the dc conductivity σ\sigma. At intermediate separations, for plasma cylinders the asymptotic interaction depends on the plasma wave length λp\lambda_{\rm p} while for Drude cylinders the Casimir interaction can become independent of the material properties. We confirm the analytical results by the numerics and show that at short separations, the numerical results approach the proximity force approximation

    Distribution of minor metallic elements within waste incineration bottom ashes defined by WDX/EDX spectrometry

    Get PDF
    A number of metallic elements are inherited from waste during thermal treatment and concentrated in the incineration residues. Because the major part of the incineration residue mass are bottom ashes (BAs), their study is of great importance from the point of view of their environmental impact or resource potential. The general focus of this study was on the minor metallic elements present in BAs. They co-occurred with main phases and often determined the inherited potential of the material. The analysed residues were produced from municipal and industrial waste. The BAs were studied using spectroscopic methods of chemical microanalysis: energy dispersive X-ray spectrometry (EDX) and wavelength dispersive X-ray spectrometry (WDX). Both the main and minor metallic elements were concentrated in metallic components. They were typically present as separate grains and metallic inclusions (commonly in the glass matrix of the grains) ranging in size from several to hundreds of micrometres. Despite Fe-, Al- and Cu-rich occurrences, metallic elements rarely occurred in fragments composed of a single element. Their main forms of occurrence were alloy grains, admixtures in polymetallic occurrences and micro-inclusions in glassy matrix. The content of particular elements in those forms was investigated and described in greater detail. Even though two types of bottom ash were formed from different types of waste and differences in used technologies were present, the obtained materials contained metallic components having similar attributes. Elevated concentrations of not only Fe and Al, but also Ti, Cu and Zn, allow us to consider bottom ash as a promising material from the point of view of metallic elements' recovery (e.g. by the physical concentration of elements through gravity or magnetic methods)

    Second-harmonic generation in graded metallic films

    Full text link
    We study the effective second-harmonic generation (SHG) susceptibility in graded metallic films by invoking the local field effects exactly, and further numerically demonstrate that the graded metallic films can serve as a novel optical material for producing a broad structure in both the linear and SHG response and an enhancement in the SHG signal.Comment: 10 pages, 2 EPS figures. Minor revision

    Phase-change materials handbook

    Get PDF
    Handbook describes relationship between phase-change materials and more conventional thermal control techniques and discusses materials' space and terrestrial applications. Material properties of most promising phase-change materials and purposes and uses of metallic filler materials in phase-change material composites are provided

    Material Dependence of the Wire-Particle Casimir Interaction

    Get PDF
    We study the Casimir interaction between a metallic cylindrical wire and a metallic spherical particle by employing the scattering formalism. At large separations, we derive the asymptotic form of the interaction. In addition, we find the interaction between a metallic wire and an isotropic atom, both in the non-retarded and retarded limits. We identify the conditions under which the asymptotic Casimir interaction does not depend on the material properties of the metallic wire and the particle. Moreover, we compute the exact Casimir interaction between the particle and the wire numerically. We show that there is a complete agreement between the numerics and the asymptotic energies at large separations. For short separations, our numerical results show good agreement with the proximity force approximation

    Coreless Terrestrial Exoplanets

    Full text link
    Differentiation in terrestrial planets is expected to include the formation of a metallic iron core. We predict the existence of terrestrial planets that have differentiated but have no metallic core--planets that are effectively a giant silicate mantle. We discuss two paths to forming a coreless terrestrial planet, whereby the oxidation state during planetary accretion and solidification will determine the size or existence of any metallic core. Under this hypothesis, any metallic iron in the bulk accreting material is oxidized by water, binding the iron in the form of iron oxide into the silicate minerals of the planetary mantle. The existence of such silicate planets has consequences for interpreting the compositions and interior density structures of exoplanets based on their mass and radius measurements.Comment: ApJ, in press. 22 pages, 5 figure
    corecore