44 research outputs found

    Efficient Quantum Transforms

    Full text link
    Quantum mechanics requires the operation of quantum computers to be unitary, and thus makes it important to have general techniques for developing fast quantum algorithms for computing unitary transforms. A quantum routine for computing a generalized Kronecker product is given. Applications include re-development of the networks for computing the Walsh-Hadamard and the quantum Fourier transform. New networks for two wavelet transforms are given. Quantum computation of Fourier transforms for non-Abelian groups is defined. A slightly relaxed definition is shown to simplify the analysis and the networks that computes the transforms. Efficient networks for computing such transforms for a class of metacyclic groups are introduced. A novel network for computing a Fourier transform for a group used in quantum error-correction is also given.Comment: 30 pages, LaTeX2e, 7 figures include

    Essential idempotents and simplex codes

    Get PDF
    We define essential idempotents in group algebras and use them to prove that every mininmal abelian non-cyclic code is a repetition code. Also we use them to prove that every minimal abelian code is equivalent to a minimal cyclic code of the same length. Finally, we show that a binary cyclic code is simplex if and only if is of length of the form n=2kβˆ’1n=2^k-1 and is generated by an essential idempotent

    Π‘Ρ‚Ρ€ΡƒΠΊΡ‚ΡƒΡ€Π° ΠΊΠΎΠ½Π΅Ρ‡Π½ΠΎΠΉ Π³Ρ€ΡƒΠΏΠΏΠΎΠ²ΠΎΠΉ Π°Π»Π³Π΅Π±Ρ€Ρ‹ ΠΎΠ΄Π½ΠΎΠ³ΠΎ полупрямого произвСдСния Π°Π±Π΅Π»Π΅Π²Ρ‹Ρ… Π³Ρ€ΡƒΠΏΠΏ ΠΈ Π΅Ρ‘ прилоТСния

    Get PDF
    In 1978 R. McEliece developed the first assymetric cryptosystem based on the use of Goppa's error-correctring codes and no effective key attacks has been described yet. Now there are many code-based cryptosystems known. One way to build them is to modify the McEliece cryptosystem by replacing Goppa's codes with other codes. But many variants of this modification were proven to be less secure.In connection with the development of quantum computing code cryptosystems along with lattice-based cryptosystems are considered as an alternative to number-theoretical ones. Therefore, it is relevant to find promising classes of codes that are applicable in cryptography. It seems that for this non-commutative group codes, i.e. left ideals in finite non-commutative group algebras, could be used.The Wedderburn theorem is useful to study non-commutative group codes. It implies the existence of an isomorphism of a semisimple group algebra onto a direct sum of matrix algebras. However, the specific form of the summands and the isomorphism construction are not explicitly defined by this theorem. Hence for each semisimple group algebra there is a task to explicitly construct its Wedderburn decomposition. This decomposition allows us to easily describe all left ideals of group algebra, i.e. group codes.In this paper we consider one semidirect product Qm,n=(ZmΓ—Zn)β‹‹(Z2Γ—Z2)Q_{m,n} = (\mathbb{Z}_m \times \mathbb{Z}_n) \leftthreetimes (\mathbb{Z}_2 \times \mathbb{Z}_2) of abelian groups and the group algebra FqQm,n\mathbb{F}_q Q_{m,n}. In the case when n∣qβˆ’1n \mid q -1 and gcd⁑(2mn,q)=1,\gcd(2mn, q) = 1, the Wedderburn decomposition of this algebra is constructed. In the case when field is of characteristic 2,2, i.e. when this group algebra is not semisimple, a similar structure theorem is also obtained. Further in the paper, the primitive central idempotents of this group algebra are described. The obtained results are used to algebraically describe the group codes over Qm,n.Q_{m,n}.Π’ 1978 Π³ΠΎΠ΄Ρƒ Π . Мак-Элисом построСна пСрвая асиммСтричная кодовая криптосистСма, основанная Π½Π° ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠΈ помСхоустойчивых ΠΊΠΎΠ΄ΠΎΠ² Π“ΠΎΠΏΠΏΡ‹, ΠΏΡ€ΠΈ этом эффСктивныС Π°Ρ‚Π°ΠΊΠΈ Π½Π° сСкрСтный ΠΊΠ»ΡŽΡ‡ этой криптосистСмы Π΄ΠΎ сих ΠΏΠΎΡ€ Π½Π΅ Π½Π°ΠΉΠ΄Π΅Π½Ρ‹. К настоящСму Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ извСстно ΠΌΠ½ΠΎΠ³ΠΎ криптосистСм, основанных Π½Π° Ρ‚Π΅ΠΎΡ€ΠΈΠΈ помСхоустойчивого кодирования. Одним ΠΈΠ· способов построСния Ρ‚Π°ΠΊΠΈΡ… криптосистСм являСтся модификация криптосистСмы Мак-Элиса с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ Π·Π°ΠΌΠ΅Π½Ρ‹ ΠΊΠΎΠ΄ΠΎΠ² Π“ΠΎΠΏΠΏΡ‹ Π½Π° Π΄Ρ€ΡƒΠ³ΠΈΠ΅ классы ΠΊΠΎΠ΄ΠΎΠ². Однако, извСстно Ρ‡Ρ‚ΠΎ криптографичСская ΡΡ‚ΠΎΠΉΠΊΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΈΡ… Ρ‚Π°ΠΊΠΈΡ… ΠΌΠΎΠ΄ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΉ уступаСт стойкости классичСской криптосистСмы Мак-Элиса. Π’ связи с Ρ€Π°Π·Π²ΠΈΡ‚ΠΈΠ΅ΠΌ ΠΊΠ²Π°Π½Ρ‚ΠΎΠ²Ρ‹Ρ… вычислСний ΠΊΠΎΠ΄ΠΎΠ²Ρ‹Π΅ криптосистСмы, наряду с криптосистСмамми Π½Π° Ρ€Π΅ΡˆΡ‘Ρ‚ΠΊΠ°Ρ…, Ρ€Π°ΡΡΠΌΠ°Ρ‚Ρ€ΠΈΠ²Π°ΡŽΡ‚ΡΡ ΠΊΠ°ΠΊ Π°Π»ΡŒΡ‚Π΅Ρ€Π½Π°Ρ‚ΠΈΠ²Π° Ρ‚Π΅ΠΎΡ€Π΅Ρ‚ΠΈΠΊΠΎ-числовым. ΠŸΠΎΡΡ‚ΠΎΠΌΡƒ Π°ΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½Π° Π·Π°Π΄Π°Ρ‡Π° поиска пСрспСктивных классов ΠΊΠΎΠ΄ΠΎΠ², ΠΏΡ€ΠΈΠΌΠ΅Π½ΠΈΠΌΡ‹Ρ… Π² ΠΊΡ€ΠΈΠΏΡ‚ΠΎΠ³Ρ€Π°Ρ„ΠΈΠΈ. ΠŸΡ€Π΅Π΄ΡΡ‚Π°Π²Π»ΡΠ΅Ρ‚ΡΡ, Ρ‡Ρ‚ΠΎ для этого ΠΌΠΎΠΆΠ½ΠΎ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ Π½Π΅ΠΊΠΎΠΌΠΌΡƒΡ‚Π°Ρ‚ΠΈΠ²Π½Ρ‹Π΅ Π³Ρ€ΡƒΠΏΠΏΠΎΠ²Ρ‹Π΅ ΠΊΠΎΠ΄Ρ‹, Ρ‚.Π΅. Π»Π΅Π²Ρ‹Π΅ ΠΈΠ΄Π΅Π°Π»Ρ‹ Π² ΠΊΠΎΠ½Π΅Ρ‡Π½Ρ‹Ρ… Π½Π΅ΠΊΠΎΠΌΠΌΡƒΡ‚Π°Ρ‚ΠΈΠ²Π½Ρ‹Ρ… Π³Ρ€ΡƒΠΏΠΏΠΎΠ²Ρ‹Ρ… Π°Π»Π³Π΅Π±Ρ€Π°Ρ….Для исслСдования Π½Π΅ΠΊΠΎΠΌΠΌΡƒΡ‚Π°Ρ‚ΠΈΠ²Π½Ρ‹Ρ… Π³Ρ€ΡƒΠΏΠΏΠΎΠ²Ρ‹Ρ… ΠΊΠΎΠ΄ΠΎΠ² ΠΏΠΎΠ»Π΅Π·Π½ΠΎΠΉ являСтся Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠ° Π’Π΅Π΄Π΄Π΅Ρ€Π±Π΅Ρ€Π½Π°, Π΄ΠΎΠΊΠ°Π·Ρ‹Π²Π°ΡŽΡ‰Π°Ρ сущСствованиС ΠΈΠ·ΠΎΠΌΠΎΡ€Ρ„ΠΈΠ·ΠΌΠ° Π³Ρ€ΡƒΠΏΠΏΠΎΠ²ΠΎΠΉ Π°Π»Π³Π΅Π±Ρ€Ρ‹ Π½Π° ΠΏΡ€ΡΠΌΡƒΡŽ сумму ΠΌΠ°Ρ‚Ρ€ΠΈΡ‡Π½Ρ‹Ρ… Π°Π»Π³Π΅Π±Ρ€. Однако ΠΊΠΎΠ½ΠΊΡ€Π΅Ρ‚Π½Ρ‹ΠΉ Π²ΠΈΠ΄ слагаСмых ΠΈ конструкция ΠΈΠ·ΠΎΠΌΠΎΡ€Ρ„ΠΈΠ·ΠΌΠ° этой Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠΎΠΉ Π½Π΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Ρ‹, ΠΈ поэтому для ΠΊΠ°ΠΆΠ΄ΠΎΠΉ Π³Ρ€ΡƒΠΏΠΏΡ‹ стоит Π·Π°Π΄Π°Ρ‡Π° конструктивного описания разлоТСния Π’Π΅Π΄Π΄Π΅Ρ€Π±Π΅Ρ€Π½Π°. Π­Ρ‚ΠΎ Ρ€Π°Π·Π»ΠΎΠΆΠ΅Π½ΠΈΠ΅ позволяСт Π»Π΅Π³ΠΊΠΎ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΡ‚ΡŒ всС Π»Π΅Π²Ρ‹Π΅ ΠΈΠ΄Π΅Π°Π»Ρ‹ Π³Ρ€ΡƒΠΏΠΏΠΎΠ²ΠΎΠΉ Π°Π»Π³Π΅Π±Ρ€Ρ‹, Ρ‚.Π΅. Π³Ρ€ΡƒΠΏΠΏΠΎΠ²Ρ‹Π΅ ΠΊΠΎΠ΄Ρ‹. Π’ Ρ€Π°Π±ΠΎΡ‚Π΅ рассматриваСтся полупрямоС ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Qm,n=(ZmΓ—Zn)β‹‹(Z2Γ—Z2)Q_{m,n} = (\mathbb{Z}_m \times \mathbb{Z}_n) \leftthreetimes (\mathbb{Z}_2 \times \mathbb{Z}_2) Π°Π±Π΅Π»Π΅Π²Ρ‹Ρ… Π³Ρ€ΡƒΠΏΠΏ ΠΈ конСчная групповая Π°Π»Π³Π΅Π±Ρ€Π° FqQm,n\mathbb{F}_q Q_{m,n} этой Π³Ρ€ΡƒΠΏΠΏΡ‹. Для этой Π°Π»Π³Π΅Π±Ρ€Ρ‹ ΠΏΡ€ΠΈ условиях n∣qβˆ’1n \mid q -1 ΠΈ ΠΠžΠ”(2mn,q)=1\text{ΠΠžΠ”}(2mn, q) = 1 построСно Ρ€Π°Π·Π»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Π’Π΅Π΄Π΄Π΅Ρ€Π±Ρ‘Ρ€Π½Π°. Π’ случаС поля Ρ‡Ρ‘Ρ‚Π½ΠΎΠΉ характСристики, ΠΊΠΎΠ³Π΄Π° эта групповая Π°Π»Π³Π΅Π±Ρ€Π° Π½Π΅ являСтся полупростой, Ρ‚Π°ΠΊΠΆΠ΅ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π° сходная структурная Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠ°. ΠžΠΏΠΈΡΠ°Π½Ρ‹ всС Π½Π΅Ρ€Π°Π·Π»ΠΎΠΆΠΈΠΌΡ‹Π΅ Ρ†Π΅Π½Ρ‚Ρ€Π°Π»ΡŒΠ½Ρ‹Π΅ ΠΈΠ΄Π΅ΠΌΠΏΠΎΡ‚Π΅Π½Ρ‚Ρ‹ этой Π³Ρ€ΡƒΠΏΠΏΠΎΠ²ΠΎΠΉ Π°Π»Π³Π΅Π±Ρ€Ρ‹. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡŽΡ‚ΡΡ для алгСбраичСского описания всСх Π³Ρ€ΡƒΠΏΠΏΠΎΠ²Ρ‹Ρ… ΠΊΠΎΠ΄ΠΎΠ² Π½Π°Π΄ Q_{m,n}.$

    Group algebras and coding theory: a short survey

    Get PDF
    We study codes constructed from ideals in group algebras and we are particularly interested in their dimensions and weights. First we introduced a special kind of idempotents and study the ideals they generate. We use this information to show that there exist abelian non-cyclic groups that give codes which are more convenient than the cyclic ones. Finally, we discuss briefly some facts about non-abelian codes
    corecore