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Abstract. We study codes constructed from ideals in group algebras and
we are particularly interested in their dimensions and weights. First we in-
troduced a special kind of idempotents and study the ideals they generate.
We use this information to show that there exist abelian non-cyclic groups
that give codes which are more convenient than the cyclic ones. Finally, we
discuss briefly some facts about non-abelian codes.
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Álgebras de grupo y teoría de códigos: una breve reseña

Resumen. Estudiamos códigos construidos a partir de ideales de álgebras
de grupo y estamos particularmente interesados en sus dimensiones y pesos.
Introducimos inicialmente un tipo especial de idempotentes y estudiamos los
ideales que generan. Usamos esta información para mostrar que existen grupos
abelianos no cíclicos que son más convenientes que los cíclicos. Finalmente,
discutimos brevemente algunos resultados sobre códigos no abelianos.
Palabras clave: códigos, distancia de Hamming, peso, álgebra de grupo, ideal,
código de grupo.

1. Introduction

Group algebras play a very large role in the theory of error-correcting codes. In this very
short survey we cover only one aspect of this role: we focus on the relationship between
weight and dimension of group codes. This type of codes have recently been the object
of active research (see [2], [6], [7], [8], [9], [10], [11], [12], [13], [19], [20], [24], [27]).

We start from the most basic definitions to render the paper accessible to the general
mathematical reader. It should be noted that some important concepts of the theory,
such as encoding and decoding, are not treated here since they are of no direct interest
to our objectives
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2. A brief history

Already at the early days of computing, a method was devised to prevent a computer
from working with wrong data.

Each “word” of information sent to the computer was composed of a series of digits equal
to either 0 or 1 (or bits, as they are called in this context). One such word could be,
for example 10011001. Then, an extra digit was added at the end of each word, called
the parity-check digit which would be equal to 0 or 1 depending on whether the number
of bits equal to 1 in the given word were even or odd, In the case of our example, the
parity check would be 0 and the extended word would be 100110010.

In this way, every extended word sent to the computer would now have nine digits and
an even number of bits equal to 1.

On receiving each word, the computer would check the number of digits equal to 1, and
in case this number were odd it would know that there was a mistake in this word and
stop the task.

Of course this method has some inconveniences. First, if two mistakes were committed
the error would not be detected. Also, even if the existence of a mistake is detected, it
is not possible to determine which is the wrong bit in the word.

This was the method used in 1947 at the Bell Telephone Laboratories, where the engineer
Richard W. Hammming worked. In those days computers were much slower than
nowadays and their time was disputed among the users of the machine. Hamming’s
priority was rather low, so he had to submit his “jobs” to stand in a queue over the
weekend to be processed when possible. The computer would work on each job and if an
error was detected it, would just stop and proceed to the next job.

In an interview [18], Hamming recalls how the idea of error correcting codes came to
him:

Two weekends in a row I came and found that all my stuff had been dumped
and nothing was done. I was really aroused and annoyed and I wanted those
answers and two weekends had been lost. And so I said, “Damn it, if the
machine can detect an error, why can’t it locate the position of the error and
correct it?” 1

He started to work on this question and his idea was to add to each word not just one
parity-check digit but more digits that he called redundancy which would allow to locate
the error and hence correct it. Still in 1947, in an internal memorandum of the Bell
Telephone Company he developed a code in which the information to be transmitted was
composed of words of four bits and contained another four bits of redundancy.

Let a1a2a3a4 be a word to be transmitted. First, write it as a matrix of size 2× 2 :

[
a1 a2
a3 a4

]

1Quoted in T. Thompson, [30, p.17], where the reader can find more information on this story.
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Then extend it to a matrix of size 3× 3 (but without the entry corresponding to position
3, 3) in such a way that each row and each column has an even number of digits equal
to 1: 


a1 a2 b1
a3 a4 b2
c1 c2




Then the matrix can be written as a ‘word’ taking it by rows:

a1, a2, b1, a3, a4, b2, c1, c2.

For example, if the initial word is 1101 we dispose it as
[

1 1
0 1

]

and extend it to the matrix 


1 1 0
0 1 1
1 0


 .

Then, the word to be sent to the computer would be 11001110. The computer would
then reproduce the 3 × 3 matrix, check parity of rows and columns and it is an easy
exercise to verify that if one error is committed, then it is possible to detect the existence
of the error and also its position, so it can be corrected.

In this same memorandum, Hamming asks if it would be possible to correct an error in a
word containing four original digits of information, using only three digits of redundancy.
His results could not be published in a journal for a general audience because the company
applied for the corresponding patents and Hamming had to wait for the end of this
process, until 1950 [17].

A positive answer to Hamming’s question appeared in a paper by his colleague at the
company Claude Shannon [29] in 1948. This long work by Shannon is considered today
as a paper giving birth to two mathematical theories: the Theory of Error-Correcting
Codes and Mathematical Information Theory.

Shortly afterwords, Marcel Golay, inspired by the work of Shannon, published a paper,
one page long, in which he gives two of the most used codes in use to this day. E.R.
Berlekamp [3, p. 4] described this paper as the “best page ever published” in Coding
Theory.

3. Basic facts

A code is essentially a language devised to communicate with a machine or for commu-
nication among machines.

The fundamental elements to produce a code are:

A finite set A which we call an alphabet; its elements are frequently called letters.
We denote by q = |A| the number of elements in A and say that the code is q-ary.
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Finite sequences of elements of A are called words. The number of letters in a word
is called its length. We shall assume that all the words in the codes considered
here have the same length.

A q-ary code C of length n is then a set (of our choice) of words of length n; i.e., a
code C is a subset of

An = A×A× · · · × A︸ ︷︷ ︸
n times

.

This set is sometimes called the ambient space Fn
q of the code.

Definition 3.1. Given two words x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) in a code
C ⊂ An, the Hamming distance from x to y is the number of coordinates in which
these elements differ; i.e.:

d(x, y) = | {i, 1 ≤ i ≤ n | xi 6= yi} |

Given a code C ⊂ An the minimal distance of C is the number

d = min{d(x, y) | x, y ∈ C, x 6= y }.

For a rational number α we denote by ⌊α⌋ the greatest integer m such that m ≤ α. The
first important result in coding theory is the following.

Theorem 3.2. Let C be a code with minimal distance d and set

κ =

⌊
d− 1

2

⌋
.

Then, it is possible to detect up to d− 1 errors and correct up to κ errors.

The number κ above is called the error-correcting capacity of the code. A q-ary code
of length n containing M words and having minimal distance d is called an (n,M, d)-
code.

A natural goal, when designing a code is to look for efficiency (in the sense that it
contains a large number of words, so it can transmit enough information) and also a
large minimum distance, so that it can correct a big number of errors.

Unfortunately, these goals conflict with each other, since the ambient space An is finite.
The problem of maximizing one of the parameters (n,M, d) when the other two are given
is known as the main problem of Coding Theory.

A most important class of codes are the so-called linear codes which are constructed
as follows.

We take, as an alphabet, a finite field Fq with q elements (where q is now a power of a
prime p = char(Fq)). The ambient space Fn

q is then a vector space of dimension n over
Fq.
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A linear code C of length n over Fq is a proper linear subspace of Fq. If dim(C) = m,
then m < n.

It is easy to see that, in this case, the number of words in C is qm, so we refer to one
such code, for briefness, as an (n,m, d)-code.

A special class of linear codes was introduced in 1957 by E. Prange [25]. Originally these
codes were introduced because they allowed for efficient implementation, but they also
have a rich algebraic structure and can be used in many different ways. Many practical
codes actually in use are of this kind.

Given a word (x1, x2, . . . xn−1, xn) ∈ Fn
q , its right shift is the word (xn, x1, . . . xn−1). A

linear code C is cyclic if, for every word in the code its right shift is also in the code;
i.e., if

(x1, x2, . . . xn−1, xn) ∈ C ⇒ (xn, x1, . . . xn−1) ∈ C.

Notice that this implies that if a given word (x1, x2, . . . xn−1, xn) is in the code, then all
its circular permutations are in the code.

The map ϕ : Fn
q → Fq[X ]/〈Xn − 1〉 given by

ϕ((a0, a1, . . . , an−2, an−1)) = [a0 + a1X + . . .+ an−2X
n−2 + an−1X

n−1],

where [f ] denotes the class of the polynomial f ∈ Fq[X ] in Rn, is a linear isomorphism,
and it is easy to see that a linear subspace C in Fn

q is a cyclic code if and only if ϕ(C) is
an ideal of Fq[X ]/〈Xn − 1〉. Hence, the study of cyclic codes of length n over Fn

q is the
same as the study of ideals in the quotient ring Fq[X ]/〈Xn − 1〉.

On the other hand, if Cn denotes the cyclic group of order n and FqCn its group algebra
over Fq, it is well-known that

Fq[X ]/〈Xn − 1〉 ∼= FqCn.

Hence, the study of cyclic codes of length n over the field Fq can also be regarded as the
study of ideals in the group ring FqCn.

4. Group Codes

The concept of codes as ideals in group algebras of cyclic groups can be extended naturally
to other classes of groups. This was first done in 1967 by S.D. Berman ([4], [5]) and
independently by F.J. MacWilliams [21] in 1970.

Recall that the group algebra of a finite group G over a field R is the set of all formal
linear combinations:

α =
∑

g∈G

αgg, where αg ∈ R, for all g ∈ G.

Given α =
∑

g∈G αgg and β =
∑

g∈G βgg, we have that

α = β ⇐⇒ αg = βg, ∀g ∈ G.
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We define:


∑

g∈G

αgg


+


∑

g∈G

βgg


 =

∑

g∈G

(αg + βg)g;


∑

g∈G

αgg




∑

g∈G

βgg


 =

∑

g,h∈G

(αgβh)gh.

For λ in R we define

λ


∑

g∈G

αgg


 =

∑

g∈G

(λαg)g.

The set RG, with the operations above, is called the group algebra of G over R.

The elements of the group G form a basis of the group algebra RG over R. So if
we enumerate them in any given order G = {g1, g2, . . . , gn}, we can think of a word
(x1, x2, . . . , xn) in a space Fn

q as corresponding to the element α = x1g1+x2g2+· · ·+xngn.

With this correspondence in mind, we define:

Let G be a finite group and Fq a finite field. A group code or, more precisely, a G-code

over Fq is an ideal of the group algebra FqG.

We recall that the support of an element α =
∑

g∈G αgg in the group FqG of a group G
over a field Fq is the set

supp(α) = {g ∈ G | αg 6= 0}.

The Hamming distance between two elements α =
∑

g∈A αgg, β =
∑

g∈A βgg in FqG is

d(α, β) = |{g | αg 6= βg, g ∈ A}|,

and the weight of an element α is w(α) = d(α, 0) = |supp(α)|; then,

ω(α) = |{g ∈ G | αg 6= 0}|.

Notice that, for linear codes, it is easy to see that the minimum distance of a code
coincides with its minimum weight.

Given an ideal I ⊂ FqG, the weight distribution of I is the map which assigns, to each
possible weight t, the number of elements of I having weight t.

It is well-known that, due to Maschke’s Theorem (see [23, Corollary 3.2.8]), the structure
of the group algebra FqG changes dramatically, depending on weather q and |G| are, or
not, relatively prime.

We shall always assume, throughout, that gcd(q, |G|) = 1. In this case the group algebra
FqG is semisimple, meaning that every ideal (right, left or two-sided) is a direct summand
and is thus a principal ideal, generated by an idempotent element.

Morover, it can be shown that:
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(i) FqG is a direct sum of a finite number of two-sided ideals {Ai}1≤i≤r, called the
simple components of FqG. Each Ai is a simple algebra.

(ii) Any two-sided ideal of FqG is a direct sum of some of the members of the family
{Bi}1≤i≤r.

(iii) Each simple component Ai is isomorphic to a full matrix ring of the form Mni
(Fi),

where Fi is a field containing an isomorphic copy of Fq in its center.

Since every simple component is generated by an idempotent element, the results above
can be translated as follows:

Let G be a finite group, and let Fq be a field such that char(Fq) |6 |G|; and let FG = ⊕s
i=1Ai

be the decomposition of the group algebra as a direct sum of minimal two-sided ideals.
Then, there exists a family {e1, . . . , es} of elements of FG such that:

(i) ei 6= 0 is a central idempotent, 1 ≤ i ≤ t.

(ii) If i 6= j, then eiej = 0.

(iii) 1 = e1 + · · ·+ et.

(iv) ei cannot be written as ei = e′i+ e′′i , where e′i, e
′′
i are central idempotents such that

both e′i, e
′′
i 6= 0 and e′ie

′′
i = 0, 1 ≤ i ≤ t.

(v) Ai = Aei, 1 ≤ i ≤ s.

The idempotents above are called the primitive central idempotents of FqG.

There is a rather standard way of constructing idempotents in group algebras. If H is a
subgroup of G, then

Ĥ =
1

|H |

∑

h∈H

h

is an idempotent of FG, and Ĥ is central if and only if H is normal in G.

It is well-known that [23, Proposition 3.6.7]

(FG) · Ĥ ∼= F [G/H ],

so,

dimF

(
(FG) · Ĥ

)
= [G : H ].

Also, it is easy to see that if τ is a transversal of H in G, i.e., a complete set of repre-
sentatives of cosets of H in G, then

{tĤ | t ∈ τ}

is a basis of (FG) · Ĥ over F .

Unfortunately, an element in such an ideal is of the form α =
∑

t∈τ atĤ , which means
that, when written in the basis G of FG, it has the same coefficient along all the elements
of the form th for a fixed t ∈ τ and any h ∈ H . Thus, this kind of ideals defines repetition
codes, which are not particularly interesting.

There is another kind of idempotents that will define more significant codes.
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Theorem 4.1 ([13]). Let G be a finite group and F a field such that char(F) |6 |G|. Let

H and H∗ be normal subgroups of G such that H ⊂ H∗, and set e = Ĥ − Ĥ∗. Then,

dimF (FG)e = |G/H | − |G/H∗|

and
w(( FG)e) = 2|H |.

Let A be a transversal of H∗ in G and τ a transversal of H in H∗ containing 1. Then,

B = {a(1− t)Ĥ | a ∈ A, t ∈ τ \ {1}}

is a basis of (FG)e over F .

In the case when G is an abelian group, it is possible to decide when all primitive central
idempotents can be obtained in this way.

Let A be an abelian p-group. For each subgroup H of A such that A/H 6= {1} is cyclic,
we shall construct an idempotent of FA. Since A/H is a cyclic subgroup of order a power
of p, there exists a unique subgroup H∗ of A, containing H , such that |H∗/H | = p.

We set
eH = Ĥ − Ĥ∗,

and also

eG =
1

|G|

∑

g∈G

g.

Theorem 4.2 ([13]). Let p be an odd prime and let A be an abelian p-group of exponent
pr. Then, the set of idemponts above is the set of primitive idempotents of FqA if and
only if one of the following holds:

(i) pr = 2, and q is odd.

(ii) pr = 4 and q ≡ 3 (mod 4).

(iii) o(q) = ϕ(pn) in U(Zpn) (where ϕ denotes Euler’s Totient function).

In the particular case when G is a cyclic group of order pn, with gcd(p, q) = 1, the
theorem above gives the following

Corollary 4.3 ([13], [26]). Let F be a field with q elements and A a cyclic group of order
pn such that o(q) = ϕ(pn) in U(Zpn). Let

A = A0 ⊃ A1 ⊃ · · · ⊃ An = {1}

be the descending chain of all subgroups of A. Then, the set of primitive idempotents of
FA is given by

e0 =
1

pn

(∑

a∈A

a

)
,

ei = Âi − Âi−1, 1 ≤ i ≤ n.
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A similar result holds for cyclic groups of order 2pn (see [1], [13]).

Since the introduction of abelian codes by Berman and MacWiliams, untill recent times
there were no evidence that they would produce better codes than the cyclic ones. This
was mainly due to the fact that most of the codes that were constructed were defined
from minimal ideals and, as we shall see, these are not the ones that should be taken
into account for this purpose.

Let G1 and G2 denote two finite groups of the same order, F a field, and let γ : G1 → G2

be a bijection. Denote by γ : FG1 → FG2 its linear extension to the corresponding
group algebras.

Clearly, γ is a Hamming isometry; i.e., elements corresponding under this map have
the same Hamming weight. Ideals I1 ⊂ FG1 and I2 ⊂ FG2 such that γ(I1) = I2 are
thus equivalent, in the sense that they have the same dimension and the same weight
distribution. In this case, the codes I1 and I2 are said to be permutation equivalent and
were called combinatorially equivalent in [28]. We have the following

Theorem 4.4 ([7]). Every minimal ideal in the semisimple group algebra FqA of a finite
abelian group A is permutation equivalent to a minimal ideal in the group algebra FqC
of a cyclic group C of the same order.

However, when working with non-minimal ideals, the situation is quite different.

As mentioned in the previous section, when we stated the Main Problem of Coding
Theory, we wish to build codes with a good error correcting capacity and dimension as
big as possible. Since one of this numbers decreases as the other increases, to compare
efficiency of codes with different weights and dimensions, it seems rather natural to make
the following

Definition 4.5. For a code C, we call convenience of C the number

conv(C) = dim(C) · w(C).

Notice that this notion makes sense if one wishes to compare codes with dimensions or
weights that are somehow close. However one might have a code with a high convenience
where one of the parameter is quite big and the other rather small. Certainly, this would
not be a useful code.

Set G =< a >, with ap
2

= 1, a cyclic code of order p2 and let Fq be any field as in
the hypotheses of the Theorem above. Then, from the Corollary, there exist in FG only
three principal idempotents:

e0 = Ĝ, e1 = Ĝ1 − Ĝ , e2 = Ĝ2 − Ĝ1.

So the maximal ideals are:

I = I0 ⊕ I1 and J = I1 ⊕ I2,

with dim(I) = p, w(I) = p and dim(J) = p2 − 1, w(J) = 2, and thus conv(I) = p2 and
conv(J) = 2(p2 − 1).

Vol. 37, N◦ 1, 2019]



162 C. Polcino Milies

On the other hand, also from the Theorem above, it can be shown that if we set A =
Cp × Cp, then the principal idempotents of FqA are

e0 = Â, e1 = â− Â, e2 = b̂− Â,

and

fj = âbj − Â, 1 ≤ j ≤ p− 1,

where a and b denote the respective generators of both direct factors.

We have that

w(FqA) = p2, dim((Fq)e0) = 1;

and for the other minimal ideals Li = (FqA)ei, i = 1, 2 , Mj = (FqA)fj , 1 ≤ j ≤ p− 1,
we have:

w(Li) = 2p, dim(Li) = p− 1, i = 1, 2,

w(Mj) = 2p, dim(Mj) = p− 1, 1 ≤ j ≤ p− 1.

If H =< h > and K =< k > are two subgroups of order p of Cp ×Cp, the corresponding

idempotents are e = Ĥ − Â, f = K̂ − Â. Set

N = (FA)e ⊕ (FA)f.

Then, we have the following

Proposition 4.6 ([22]). The weight and dimension of I = (FG)e⊕ (FG)f are

w(N) = dim(N) = 2p− 2, so conv(N) = 4(p− 1)2.

Hence, if p > 3, we have that conv(N) is greater than conv(I) for all proper ideal I of
FqCp2 .

5. Non Abelian groups

Codes in group algebras of non-abelian groups have been considered for quite some time.
Lomonaco and Sabin [28] studied metacyclic groups and showed that central idempotents
generate codes that are combinatorially equivalent to abelian codes.

More recently, C. García Pillado, S. González, C. Martínez, V. Markov, and A. Nechaev,
[15] showed that this is also the case for groups G that can be written as G = AB, where
both A and B are abelian.

Hence, one should focus on ideals generated by non-central idempotents. We offer a
couple of examples in this direction taken from [2].

Example 5.1. Set G =
〈
a, b | a7 = 1 = b3, bab−1 = a2

〉
.
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It can be shown that the central primitive idempotents of F2G are

f1 = b̂â, f2 = (1− b̂)â, f3 =
1

7

(
3 + (ξ + ξ2 + ξ4)Γa + (ξ3 + ξ5 + ξ6)Γa3

)

and

f4 =
1

7

(
3 + (ξ3 + ξ5 + ξ6)Γa + (ξ + ξ2 + ξ4)Γa3

)
,

where ξ is a primitive 7th root of unity.

It can be shown also that

F2G ∼= F2 ⊕F4 ⊕M3(F2)⊕M3(F2).

Take e1 = 1 + â, which is not a central primitive idempotent, and compute

f = (̂b + b̂a(1 + b̂))e1 = (̂b + b̂a(1 + b̂))(1 + â)

= 1 + b+ b2 + a+ a2b+ a4b + a+ ab+ ab2 + a2b+ a2b2 + a2 + a4b2

+ a4 + a4b+ Ĝ.

The weight of f is w(f) = 12, and it can be shown that the weight distribution of this
ideal is

weight 0 8 12
words 1 21 42

This is a [21,6,8]-code, which has the same weight of the best known [21,6]-code (see
[16]).

Example 5.2. Let

D6 =
〈
a, b | a3 = 1 = b2, bab = a2

〉

be the dihedral group of order 6, and let Fq be a finite field with q elements such that
U(Z3) = 〈q〉. By [11, Theorem 3.3]), the central primitive idempotents of FqD6 are

e11 =

(
1 + b

2

)
Â, e22 =

(
1− b

2

)
Â, , e1 = 1− e11 − e22,

and we can write f = e11 − e12 and set I = FqD6 · f . Since dim[I] = 2, the set {f, af}
is a basis over Fq, and an element α ∈ FqD6 · f can be written as

α = α0f + α1af =
1

12
[(4α0 + α1) 1 + (−5α0 + 4α1) a+ (α0 − 5α1) a

2

+ (4α0 − 5α1) b+ (α0 + 4α1) ab+ (−5α0 + α1) a
2b].

If q = 11, a direct computation show us that w(I) = 5, the weight of the best known
[6,2]-code according to [16]. This is also the case for any field of characteristic different
from 2, 3, 5 and 7.
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5.1. Idempotents and left ideals in matrix algebras

Since the building blocks of finite semisimple group algebras are matrix algebras over
finite fields, it is natural to try to determine all non-central idempotents defining left
ideals in this kind of rings. These can be obtained as follows.

Let E(n, k) denote the set of all matrices A = (aij) such that there exist k rows, at
positions denoted i1, i2, . . . , ik, verifying:

(i) Every row of A, except these, is a row of zeros.

(ii) aijij = 1 and aij ,h = 0 if h < ij, 1 ≤ j ≤ k.

(iii) aij ,h = 0 for h = is, j + 1 ≤ s ≤ k.

The set of numbers i1, i2, . . . , ik will be called the pivotal positions of A.

For example, E(4, 3) is the set of all matrices of the form:



1 0 0 a14

1 0 a24

1 a34

0


 ,




1 0 a13 0

1 a23 0

0 0

1


 ,




1 a12 0 0

0 0 0

1 0

1


 ,




0 0 0 0

1 0 0

1 0

1




with aij ∈ Fq.

Theorem 5.3 ([14]). The elements of the set E(n, k) are idempotent generators of the
different left ideals of rank k of Mn(Fq). Moreover, each left ideal of rank k has q(n−k)k

different idempotent generators.
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