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AuHOTanuga

B 1978 roay P. Mak-9y1com mOCTpOeHa TIepBasi aCUMMETPUYHAS KOIOBAsi KPUIITOCUCTEMA,
OCHOBaHHAs HA MPUMEHEHUU TIOMEX0YCTONYIUBBIX KOMOB lonmbr, mpu 3ToMm 3¢ dekTrBHbIE aTakn
Ha, CEKPETHBIN KJII0Y ITOH KPUIITOCHCTEMBI /10 CHUX IOp He HaiimeHnbl. K HacTodgmeMy BpeMeHu
MU3BECTHO MHOTO KPUIITOCKHCTEM, OCHOBAHHBIX HA TEOPUHU TOMEXOYCTONIMBOro Koaupoauus. Q-
HUM H3 CHOCOOOB MOCTPOEHUs] TAKMX KPUITOCHUCTEM SIBJISETCs MOAU(DUKAIUS KPUIITOCHCTEMbI
Mak-9Jmca ¢ TOMOIIBIO 3aMeHbl KomoB [onmbr Ha Apyrue Kiaacchl Koaos. OIHAKO, W3BECTHO YTO
KpunTorpaduveckas CTONKOCTh MHOTUX TAKUX MOAUMUKAINNA yCTYMAeT CTOMKOCTH KJIACCHUIE-
cKoOit kpunrocucrtembr Mak-dJmca.

B cBsi3u ¢ pazBuTHEM KBAHTOBBIX BBIYHCIEHUH KOIOBBIE KPUIITOCHCTEMbBI, HAPSIY C KPUIITO-
CHCTEeMaMMHU Ha, PEIETKAX, PACCMATPUBAIOTCS KAK ATBTEPHATUBA TEOPETUKO-IUCIOBBIM. [109T0-
My aKTyaJbHA 33298 [MOMCKA IMEPCIEKTUBHBIX KJIACCOB KOJIOB, IPUMEHUMbIX B KPUIITOIPAQUU.
[IpencrasasieTcss, 910 [jIsi STOTO MOYKHO WMCIOJIH30BATH HEKOMMYTATHBHBIE T'PYNIOBBIE KOIBI,
T. €. JIEBbIE W/I€AJIbI B KOHEYHBIX HEKOMMYTATHUBHBIX TPYIITOBLIX ajredpax.

st vuccnenoBanust HEKOMMYTATHBHBIX MPYIIIOBBIX KOJOB MOJIE3HOM dBsercs Teopema Ben-
JepbepHa, TOKa3bIBAOIIAs CYIIeCTBOBAHNE N30MOP(MHU3MA IPYIIHOBOM aniredphl HA TPSIMYIO CyM-
My MarpuaHblx ajredp. OJHAKO KOHKPETHBIH BUJI CJIArA€MbIX M KOHCTPYKIUs u30MOpdu3sma
9TOI TeopeMoil He OMpPee/IeHbl, W MOITOMY I KaXKJIOW TPYIIIBI CTOUT 331293 KOHCTPYKTHB-
HOTO OMHUCAHUs pas3joxkeHus BemgepbepHa. 9TO pa3ioKeHWE MO3BOJISET JIETKO MOJIYYUTH BCE
JIEBBIE WIEAJIbI IPYIIOBON aJreOphI, T.€. TPYIITOBbIE KO/IbI.

B pabore paccmarpuBaercsi HOMYHPsAMOe HIpou3BeneHue Qpmn = (Zpy X Zp) N (Lo X Zsg)
abeJieBbIX I'PyII U KOHedHad rpymnuosad ajurebpa FqQp, , droil rpynust. g sroit anrebps
mpu ycnosusix n | ¢ — 1 w HOM(2mn,q) = 1 mocrpoeno pasnoxenne BemmepGépra. B ciy-
Jae TOJIs YETHON XapaKTEpUCTUKH, KO/ TA TPYIIOBAs ajaredpa He SBJISETCS MOJIYIPOCTOH,
TaKKe MOJIy9eHa, CXOTHAsA CTPYKTypHas Teopema. OmucaHbl BCE HEPA3JIOKUMBIE IIEHTPATHHBIE
UJIEMIIOTEHTHI 9TOH rpynmoBoit anreGpoi. TlomydenHbie pe3yabTaThl HCHOIB3YIOTC s anreo-
PaUYecKoro OIUCAHUS BCEX IPYIIIOBBIX KOAOB HAL (Qpy p.

Karwuesvie cao6a: TpymmoBasi ajaredpa, moIynpsiMOe MPOU3BeIeHNE, KOHETHOE TIOJIe, PA3JI0-
xenne BemmepOépHa, JeBble nIeaJibl, TPYIIIOBBIE KOJIbI.
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Abstract

In 1978 R. McEliece developed the first assymetric cryptosystem based on the use of
Goppa’s error—correctring codes and no effective key attacks has been described yet. Now
there are many code—based cryptosystems known. One way to build them is to modify the
McEliece cryptosystem by replacing Goppa’s codes with other codes. But many variants of this
modification were proven to be less secure.

In connection with the development of quantum computing code cryptosystems along
with lattice-based cryptosystems are considered as an alternative to number-theoretical ones.
Therefore, it is relevant to find promising classes of codes that are applicable in cryptography.
It seems that for this non—commutative group codes, i.e. left ideals in finite non—commutative
group algebras, could be used.

The Wedderburn theorem is useful to study non—commutative group codes. It implies the
existence of an isomorphism of a semisimple group algebra onto a direct sum of matrix algebras.
However, the specific form of the summands and the isomorphism construction are not explicitly
defined by this theorem. Hence for each semisimple group algebra there is a task to explicitly
construct its Wedderburn decomposition. This decomposition allows us to easily describe all
left ideals of group algebra, i.e. group codes.

In this paper we consider one semidirect product Qum n = (Zp, X Zpn) N (Zg X Zz) of abelian
groups and the group algebra FyQ,, . In the case when n | ¢ — 1 and ged(2mn,q) = 1,
the Wedderburn decomposition of this algebra is constructed. In the case when field is of
characteristic 2, i.e. when this group algebra is not semisimple, a similar structure theorem
is also obtained. Further in the paper, the primitive central idempotents of this group algebra
are described. The obtained results are used to algebraically describe the group codes over Qp, .

Keywords: group algebra, semidirect product, finite field, Wedderburn decomposition, left
ideals, group codes.

Bibliography: 21 titles.

For citation:

K. V. Vedenev, V. M. Deundyak, 2019, "The structure of finite group algebra of a semidirect
product of abelian groups and its applications" , Chebyshevskii sbornik, vol. 20, no. 3, pp. 107-123.



CrpykTypa KOHEUHOW IPyHIOBOi ajJredpbl OJHOTO MOIYIPSIMOTO TPOU3BEICHUS . . . 109

Introduction

Let G be a finite group with the identity e, written multiplicatively, let R be a ring with the
identity 1 and F; be a Galois field of order g. Recall, the group ring RG is a set of all formal linear
combinations o = geG 499, ag € R, equipped with operations of addition and (left and right)
multiplication by elements of R defined componentwise and multiplication defined as follows:

g Bag= (Z agh—15h> g-

geG geG geG \heH

(see [1]). In the case when R is commutative, RG is also called group algebra of G over R ([2], [1]).
Note that, the correspondences g — 1grg, g € G, and r +— re, r € R, define natural embeddings of
the group G and the ring R into RG.

Any left ideal I C F,G is called a group code over G (see [3], [4]). This algebraic approach to
codding theory was introduced by S.D. Berman [5]. In this approach, all elements of the field F,
are the encoding alphabet and the order of the group G is the length of codewords. Note that the
dimension of a code C' C F, is its dimension as an Fg-subspace in F,G. Many classical codes can
be realized as (left) ideals in group algebras (see survey |[3|), including Reed-Solomon codes (4],
[6]) and Reed—Muller codes (|4], [5], [7]). Algebraic approach to error—correcting codes gives some
benefits, i.e. additional algebraic structure helps to study more efficient encoding and decoding
algorithms for known codes (see for example [8]) and to discover new classes of codes in group
algebras (|9], [10], [11]).

Another motivation to study codes in non—commutative group algebras is that this codes could
be useful in cryptography. R. McEliece developed an asymmetric cryptosystem based on the use of
binary Goppa codes in 1978 and no effective key attacks has been described yet. Code cryptosystems
are considered as a potential replacement to number-theoretical ones in the connection with the
development of quantum computing (see NIST-PQC competition [12]). The main disadvantage of
the original McEliece cryptosystem is that the private and public keys are very large matrices.
To reduce the key size there have been attempts to replace Goppa codes with other classes of
error—correcting codes. Variants of the McEliece cryptosystem based on the use of well-known
Reed—Solomon codes and Reed-Muller codes, which can be realized as two-sided ideals in some
abelian group algebras, were proven to be less secure ([13], [14], [15]). So, non—commutative codes,
which are one-sided (left) ideals in non—commutative group algebras, could be a good option to
build new resistant and convenient in use cryptosystems.

The Wedderburn theorem implies that if F,G is semisimple then F,G is isomorphic to a direct
sum of matrix algebras over some extensions of the field F,. This theorem is a very powerful tool
to study the structure of non-commutative codes, but it gives no information about the summands
and the isomorphism. So, for an arbitary group algebra F,G there is a problem of constructing
its Wedderburn decomposition. There are several results on how to construct the Wedderburn
decomposition and central primitive idempotents known (see [16], [17] ). In [18] the Wedderburn
decomposition of finite dihedral group algebra was described and in [11] this decomposition was
used to study the dihedral codes.

Let m,n € N and let @, be a group with the following presentation:

m n 12 2 ¢ -1 b —1
(a1,a2,b,c|al’,ay,b*,c*,af = ay ",a3 = a; ,a1a2 = agay, bc = cb, ba; = a1b, cagy = azc), (1)

hereinafter 9 = g~1gg. We will call Q,, , the (m, n)-bidihedral group. In this paper we consider the
bidihedral group and its group algebra F,Q,, . Under certain conditions, we obtain its Wedderburn
decomposition in the semisimple case. Also we prove the similar structure theorem in the non-—
semisimple case. Then we explicitly describe the primitive central idempotents of this algebra.
Finally, the obtained results are applied to algebraic codding theory.
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The paper is organized as follows. In section 1 we introduce some preliminaries about the
bidihedral group Qm n, its group algebra and polynomials over finite fields. In section 2 we prove the
general structure theorem for this group algebra and then we obtain the Wedderburn decomposition
of FyQm.n- In section 3 we construct the inverse of isomorphisms described in the previous section
and then explicitly describe primitive central idempotents. In section 4 we apply this results to
codding theory, i.e. we obtain the explicit description of the group codes over @y, p.

1. Preliminaries

Let G be a group and S C G. Bellow, by (S) we denote the subgroup of G generated by S. Let
Dy, be a dihedral of order 2n, i.e. Dy, has the presentation (see [19], p. 6):

D2n == <.’L',y ‘ xn’y2’$y - .’L'_1>.
Consider the group @, defined in (1). Hereinafter aj, az, b, ¢ are from (1).

LEMMA 1. Let Gi = (a1, ¢) and G2 = (az,b). Then
(i) G1 ~ ng and GQ ~ Dgn
(1) Qm.n decomposes into a direct product of G1 and Go.

. e obvious ave
OKABATEJBLCTBO. We ob ly h
2 -1 2 b -1
Gi=(a1,c|al’,c"af =ay"), Go2=/(az,blay,b” a3=ua;")

are presentations of G1 and Gs. It follows that G1 ~ Dy, and Go >~ Do,.

Since [19], p. 3, it follows that a direct product of G; and Gy has a presentation of the form
(1), hence @, decomposes into a direct product of Gy and Go. O

From previous lemma we obtain the following result.

LEMMA 2. Let N = (ay,a2) and H = (b,c); then

(i) N =~ Zy, X Ly, is normal;

(i) H ~ Ty x To;

(711) Qm n is a semidirect product of N by H (Qumn =N XNH).

Let R be a ring (field); by M,,(R) we denote the ring (algebra) of (n x n)-matrices over R.
LEMMA 3. The group Qm,n ts tsomorphic to the matriz group
€1 NzZ1 Mzy
Tm,n = 0 €9 0 S Mg(Zmn) ‘ € = :|:1, 21,29 € Zmn
0 O 1

JOKA3BATEJBLCTBO. Let

1 n O 1 0 m R -1 0 O 1 0 0
aa=10 1 0], aa=(0 1 0}, b= 0 -1 0}, =0 =1 0
0 01 0 0 1 0 0 1 0 0 1

Observe that
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It follows that @1, ds, b, ¢ are the generators of Ty, . It is easy to check that

e _~-1 b~
y ap=40a;, Qg =40a9 ,

G18y = G941, De=1¢b, bay =a1b, €y = Goc.

Hence we can define epimorphism (see [20], p. 15) ¢ : Qm.n — Tmn by the generators of Qp, p:

~

©w: aj+rdy, asr>as, brb, c—C.

Since |Qm.n| = 4mn and |T,,| = 4mn, it follows that ¢ is an isomorphism. O
Consider the group algebra F;Qm . Any u € FyQ,, , can be written as

U = Po(al, a2> + bP; (al, az) + CPQ(al, ag) + bcP3(a1, az), (2)

where Pj(x1,22) € Fy[z1,22] has degree in x; less than m and degree in zo less than n, i.e.
deg,, (Py) < m, deg,,(P) < n.

Throughout this paper we will assume that gcd(mn,q) =1 and n | g — 1.

Bellow we will use the following results on polynomials over finite fields. For every polynomial
g(z) € Fy[z] with g(0) # 0, g*(z) denotes its reciprocal polynomial, i.e., g*(z) = 2489 g(2~1). We
say that a polinomial g(x) is auto-reciprocal if g(z) and g*(z) differ by a multiplicative constant.

Define
1, nisodd,
-]

2, nis even.

The polynomials 2™ — 1 € Fy[z] and 2™ — 1 € [F,[z] split into monic irreducible factors as

g™ —1= (fl cee f7‘1)(fT1+1f:1+1fT’1+2f:1+2 s fT1+S1f:1+sl)7 (3)

" =1 = (g1 9r2)(Groat 1979 419r2+20rs+2 - - - Grats20rst55)> (4)

where fi = g1 =2 -1, ff = fjfor 1 <j <, g =gjforl <j<ryand fo =x+1ifm
is even, go = x + 1 if n is even. Here ry, 9 denote the numbers of auto-reciprocal factors in these
factorizations and 2s1, 259 denote the numbers of non-auto-reciprocal factors.

Since Fy ~ Z4—1 and n | ¢—1, it follows that there exist a multiplicative subgroup of IFg of order
n, hence the factors in (4) are of degree 1. And since x — 1 and x 4 1 are the only auto-reciprocal
polynomials of degree 1, it follows that ro = £{(n) and sy = %(n)

Let h € Fy[z] be irreducible, deg(h) = k and let « be a root of h in an extension of F,. By F,[¢]
we denote the extension of F, with . It is well known that F,[a] = Fy[a™!] and F,la] ~ Faca(n) -
Any element ¢ € Fy[a] can be written as v(a) or w(a™t), v,w € Fy[z] and deg(v) < k, deg(u) < k.
Polynomials v(x) and w(x) are called polynomial representations of ¢ with a and o~

By «a; we denote a root of the polynomial f; in an extension of F, and by 3; we denote a root
of the polynomial g;.

2. The Wedderburn decomposition of F,(Q),, ,,

Bellow, by (h)x we denote the cyclic group of order k with a generator h.

Let G be a group and R be a F,-algebra, then we can extend multiplication by the elements of
F, to RG. Note that, RG equipped with this operation is a F,~algebra.

Foreachie {1,...,m+s1}and j € {1,...,r2+ s2} let v ; be the F,—algebras homomorphism
of FyQm.,n defined by the generators of @y, as follows:
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1. 1<i<g(m)and 1 <j <ry:
Vij : FgQmn — Fg((h1)2 x (h2)2)
viglar) = i, vijlag) = B, vij(b) = hi, wij(c) = ha.
2.6m)+1<i<ri+syand 1 <j<rg:

Vij: Fqu,n — My (Fq [al])<h>2

vij(a1) = (ng 021) , Viglaz) = (% gj) , vij(b) = <(1) (1)) h,  vij(c) = <(1) (1)> :

3.1<i<&(m)and ro+1<j<ry+ s9:

Vij: IFqu’n — MQ(Fq)<h>2

st = (5 0) ot = (3 5) wm= (7 ). wa= (g 9)n

4. &m)+1<i<ri+siandro+1<7<ry+s9:

Vi,j : Fqu,n — M4(Fq[042])

o 0 0 0 B 0 0 0
ay=|0 @ 0 0 (a) = 0 81 0 0
A =0 0 oyt 0 |0 YT o 0 B 0 |

0 0 0 ot o o o g

0100 0010
1000 000 1
vii® =10 0 0 1 %O=11 0 0 0
0010 010 0
For each £(m) + 1 <i < r; define
1 0 —Qy 0
1 —o . o1 0 —q
Zi _<1 —a;1>’ Zi= 1 —a;t 0
01 0 —at

and automorphisms
oi : Ma(Fylai])(h)2 — Ma(Fglei]){h)2, oi(X) = Z;7' X Z;
it My(Fylai]) = My(Fylew]), 6:(X) = Z7 X Z;.

LEMMA 4. (i) Let £(m) +1<i <7y and 1 < j < ro; then im(ov; ;) C Ma(Fylay + o ']) (h)o.
(1t) Let E(m) +1 <i <1y and ro+ 1 < j <o+ s9; then im(6;v; ;) C My(Fqla; + ai_l]).
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JIOKABATEJNBLCTBO. In the case &(m) +1<i <711+ s and 1 < j <ry we have

o) = () o tan)s emae = (5 0). wpm= (5 9)n

o= (5 ).

Hence im(UiVi,j) C MQ(Fq[Oéi + ai_l])<h)2.
Similar computations shows that in the case {(m) +1<i<r;+sjand ro+1 <7 <ry+ s
we have im(&;v; ;) C My(Fy[a; +a;1]). O

BAMEYAHUE 1. Observe that if t is a root of the polynomial g € Fy[z], then t=1 s a root of g*.
When g € Fy[x] is auto-reciprocal and irreducible and g( ) # 0, g(—1) # 0, there ezists a polynomial

h € Fy[z], such that h(t+t~1) = 0 and deg(h) = deg (see [18], remark 3.2). It follows that

. _ de
dimp, (Fy[t +t = g;( 9) (5)
Finally, let us define the map
r1+s1 ra+s2 O3Vij, (f(m) +1<:< Tl) A (1 < .7 < TQ)
@ @ Pigs Pij = &jVi,j; (§(m>+1§i§701>/\(7”2+1§j§7’2+32)' (6)
=1 J=l Vij,  otherwise

TEOPEMA 1. Let ged(mn,q) =1 and n | ¢ — 1; then the map

r1+81 r2+S2

piFQmn — @ @ B;j,

=1 j=1
Fy((h1)2 % (h2)2), (I1<i<&m))N(1<j7<r)
My (Fylai 4+ a; ')(h)2, (§(m)+1<i<r)A(1<j<r)
g . — | Ma(Fqlail){h)2, (rm+1<i<ri+s)A(Q1<g<r)
Y] Mip(Fy) (), (1<i<€&m))A(ra+1<j<ro+sy)
My (Fylos + a; 1), (Em)+1<i<r)A(r2+1<j<ry+s2)
My (Fglev]), (Mm+1<i<r+s)A(r+1<j<r+s9)

1S an 1somorphism.

JOKA3ATENBCTBO. First we show that p is injective, i.e. if p(u) = 0 then u = 0.
Now let u € FyQp, », be of the form (2) then

1) in the case (1 <i < &(m)) and (1 < j < ry) we have
vij(u) = Po(ai, Bj) + Pi(ai, Bj)h1 + Pa(cy, Bj)ha + P3(a, B)hihs; (7)

2) in the case £(m) +1 <17 <r;+s; and 1 < j <rg we have

) — (Pl By) Py(a;t, 85) Pi(ai, B;) Ps(a -_17@})
Vi (u) = <P2(Oéi7/3j) Po(ai_ljﬁj)> * <P3(Oéi,5j) Pi(a fl,ﬁg)) (8)
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3) in the case 1 <i < &(m) and 9 + 1 < j < r9 + s2 we have

oy [(Poles, Bj) Pl(aiaﬁ‘_l)> (Pz(ai,ﬁj) P3(Oli,5~_1)> _
vig(u) = <P1(Oéi;/3j) Po(ai,ﬂ?l) * P3(ay, Bj) Pz(ai,ﬂj_l) b ©)
4) in the case {(m) +1 <1 <r;+s;and ro + 1 < j < 19+ so we have
Py(a, Bj) Pl(ai,ﬁi) Py(a;t, B;) P3(a;1,5‘71)
o | P By) Polai, B7Y) Pa(egtB5) Pale B
viglu) = Py (i, B) P3(ai,5§1) Po(a; ", 8)) Pl(aflaﬁj-fl) 10
Py(ai, ;) Pa(ai, 8;7) Pila;',B;) Pole; ', 87

Note that, since o; € Fg[o;] and ; € Fy, it follows that Pk(ai,ﬁfl), Pk(afl,ﬁj-ﬂ) € Fylay).
Since p(u) = 0 we see that v; ;(u) = 0. It follows that
Pi(ei, Bj) = Pu(ei, B;1) = Pi(a; ', 85) = Pi(e; 1, 8;1) =0 (k=0..3) (11)

for all 1 <4 <7y +s1,1 <7 < g+ s2. Since deg,, Py(z1,22) < m and deg,, Py(z1,22) < n, it
follows that

m—1n—1 n—1 m—1
i\ ,
(21, 22) g g ¢l = E zt E cijry | = E x] Pri(z2), deg Pyi(x) < n.
i—0 j=0 =0 i—0

Using (11) and (3), we obtain Py(x, ;) € F4lz] and Pk(w,ﬁj_l) € Fylz] are divisible by the
polynomial = — 1 for all j € {1,...,72 + s2}. Since deg,, Pi(x1,72) < m, we conclude that
Py(z, B;) and Py(x, Bj_l) are null polynomials, hence

Pyi(Bj) = Pu(B;") = 0.
It follows that polynomials Py;(x) are divisible by 2™ — 1 and we immediately conclude that Py;(x)

are also null polynomials. Therefore, we have Py(x1,z2) = 0. Injectivity is proved.
Finally, it remains to show that

r1+81 r2+s2

diqu Fqum = diqu @ @ Bi,j

Using (5), we obtain dimp, (@:;?1 @;2;{32 Bi,j) =

r1+S1
=19 45( Z dlqu (MQ(F [Ozi + a;l])) + 2 Z diqu (Mg(Fq[al])) +
i=£(m)+1 i=r1+1
r1+s1 r1+s1
+59 ( §(m) dimg, Ma(Fy) + > dimg, (My(Fgles +0; ']) + > dimg, (M4(Fq[ai]))> =
1=r1+1 1=r1+1
ri+s1
= (n—2s9) | 4¢(m) + 4 Z degf]+8 Z deg fj | +
i=¢(m)+ i=ri+1
r1+s1
+s9 | 8¢(m) + 8 Z deg f; + 16 Z deg fj | = 4(n — 2s2)m + 8som = 4mn =
i=&(m)+1 1=r1+1
= dimp, FqQumn-

Hence p is an isomorphism. O
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LEMMA 5. Let R be an algebra with identity 1 and (1g + 1g) has an inverse element in R;
then R(h)s ~ R® R and R((h1)2 X (h2)2) > R® R® R® R.

JIOKABATENBCTBO. Indeed, the map ¢ : R(h)2 — R @ R such that
@(r1 +1r2h) = (r1 +ro,r1 —12)

is an isomorphism and
T+ T2 1L — T2
(Ir+1r)  (Ir+1R)

Since R((h1)2 % (h2)2) ~ (R(h1)2) (h2)2 it follows that

o (r1,m2) =

R({h1)a x (ha)2) ~ R(h)s ® R(h)s ~ R® R® R® R.

O
Now we can establish the Wedderburn decomposition of FyQ, in the case ged(2mn,q) =1
and n | g — 1.

TEOPEMA 2. Let ged(2mn,q) =1 and n | ¢—1; then FyQy, n, has the Wedderburn decomposition
of the form:

r1+81 T2+S2

d:FQmn— B P A (12)
LN
Fq @ Fq @ Fq & Fy, (1<i<Em)A(1<j<r)
M (Fy[a; + oy 1) @ Ma(Fyla; + o ]), (E(m) +1<i<r)A(1<j<r)
A, . = d Ma(Flai]) © Ma(Fglai]), (rm+1<i<ri+s)A(1<j<r)
" M2(Fq)@M2( a)s (1<i<&m))A(ro+1<j<ry+s)
My (Fy[e; + ;1) (Em)+1<i<r)A(ra+1<j<ra+s9)
My (Fgevi]), (rMm+1<i<r+s)A(r2+1<7 <12+ s9)

JIOKABATE/ILCTBO. Let us define the maps 7 ;
1. for 1 <i<&(m)and 1 <j <rg:

Tig : Fo((h1)2 x (ha)2) — F

7.5 (Xo + X1h1 + Xoho + Xshihe) = (Po+ P+ P+ P, Po+ Py — P, — P,
Po— P+ P,— P, Py— P, — P, + P3);

2. for{(m)+1<i<ryand 1 <j<rg:
7« Ma(Fqlaq + ai ') (h)2 — Ma(Fylai + a;']) @ Ma(Fylai + ;1))
7;.5(Xo + X1h) = (Xo + X1, Xo — X1);
.form+1<i<ri+siand1<j<rg:

i+ Ma(Fylau])(h)a — Ma(Fylai]) ® Ma(Fylai]), 7i;(Xo + X1h) = (Xo + X1, Xo — X1);

4. for 1 <i<g¢(m)andro+1<j <ryg+ s

Tij : Ma(Fg)(h)e — Ma(Fy) ® Ma(Fy), 7ij(Xo+ X1h) = (Xo + X1, Xo — X1);
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Using lemma 5 we conclude that 7; ; are F,—algebras isomorphisms. Now let

( .
TijVijs Em)) A (1< j <)
1

Ti,jOiVi,j, <i<r) A1 <j<ry

r1+81 r2+s2

(
(
d= @ @dij, dij = Ti,jVi,j> (Mm+1<i<ri4+s)A(1<j<r)
v (1<
(
(

Ti Vi

=1 = Em)) A (r2 +1< 5 < g+ s9)
1

<i<r)A(ro+1<j<ro+ s2)
rA1<i<r+s)A(ra+1<3j<rog+s9)

OilVij,

Vi g,
Therefore, using theorem 1 we see that d is an isomorphism. O

BAMEYAHUE 2. Since Qmpn =~ Qnm, we can also use these theorems in the case n{q—1 but
m|q—1.

3. Primitive central idempotents of F,0),, ,,

Let R be a ring. Recall, i € R is an idempotent if i> = i. Two idempotents i1, € R are called
orthogonal if 4179 = i9i7 = 0. An idempotent i is called central if ri = ir for all » € R. An (central)
idempotent i is said to be primitive (central) idempotent if i cannot be written as i = i’ 4" where
i’ and 7" are such (central) idempotents that ¢’,i” # 0 and ' = 0.

In this section, firstly, we consider the set of idempotents of cyclic group algebra. This set allows
us to explicitly construct p~—! and d~', where isomorphisms p and d are defined in the section 3.
Then we use d—! to describe the primitive central idempotents of FQm » in the case ged(2mn, ¢) =1,
n | ¢ — 1. Note that the maps p~! and d~! could also be useful to study the algebraic structure of
group codes over Q, n.

Let ged(k, q) = 1. Let Ry := Fy[z]/(z* — 1), where (2 — 1) denotes the principal ideal of F[z]
generated by ¥ — 1. Tt is known (see [18], lemma 2.1) that for monic polynomial g(z) | z¥ — 1 an
element

Fla) =~ (g(@))T" a* ~1 (13)

zk—1
g(x)

is the principal idempotent of the ideal Ry[ 1, where [g(z)] € Ry is the equivalence class of

9(x).
LEMMA 6. Let g(x) be a monic irreducible divisor of ¥ — 1 and a be a root of g; then
(i) eg(a) = 1;

(ii) 6’;(/8) = 0 for any root B8 of the polynomial xgk(;)l‘

JTOKABATENBCTBO. The definition (13) yields (i7). The Chinese reminder theorem implies that
the map
Fyfa] Fyfa]

(9(2) © (@F = 1)/g(x))’

k
g

zk —
©: Ry — P(z) — <P(m) mod g(z), P(x) mod 1)

g9(z)

is an isomorphism. Since e;(x) is an idempotent and (E; ‘éf)]) is a field, it follows that

el;(x) mod g(x) = 1.

Hence e’;(a) = 1. O Tt is well known that F,(h)x ~ Ry, hence for any g(z) | (z¥ — 1) we have

elg(h) € Fy(h)k is an idempotent.
Let S be a set. By idg we denote the identity map on S.
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LEMMA 7. Let ged(g,mn) =1, 1 <i<&(m) and 1 < j <rq. Let
pij : Fq((ha)2 x (h2)2) = FqQmn
be a map defined by
1ij(po + p1ha + paha + pshihs) == (po + p1b + pac + psbe) e}, (a1)ey, (az).
Then vi jpij = idim, ;) and vijpi; =0 if i' # i or j' # j.
JOKABATE/NLCTBO. Lemma 6 implies that vy jp; ; = 0 if ¢ # i or j’ # j. We have
Vij ((po + p1b + pac + psbe) 67}(6&1)62].(@)) = po + p1h1 + paho + p3hs.
Hence v jpij = idim(, ;)- O

Lemmas 8-12 are proved in the same way. Recall, the maps v; ; are [F,—algebras homomorphism
and their images in fact were described in (7)—(10).

LEMMA 8. Let&(m)+1<i<7ri and 1 <j <ry. Let
pij 2 im(vi ) = FeQumon,

; ot Q; a7t
i : (pO(Oé%) pl( 11)> + (Zzga:; gig@;%) h — |:p0(a1) + bpz(al) + cpl(al) =+

+beps(ay) e?}(al)egj(az).
Then vi jpuij = idim, ) and vejpi; =0 if i # i or §' # j.

LEMMA 9. Letri+1<i<ri+s and1 <5 <ry. Let
Hiyj - im(Vi,j) — Fqu,na

() pa(ai) |, (pales) polar)
s (pl(()éi) pg(ai1)> + <p5(04i) p7(0‘i1)) h— [100(@1) + bpa(a1) + cp1(ar) +

+bcp5(a1)} efi(ar)eg, (az) +
+ [pa(ar) + bps(ar) + epa(ar) + bepr(a) | € (ar)ef, (az).
Then vi jpij = idim, ;) and vigpi; =0 if i' #i or j' # j.
LEMMA 10. Let 1 <i<&(m) and ro +1 < j <719+ s9. Let
fij o im(v5) = FqQmon,

Po P2 P4+ D6 m n
L + h»—>[ + bp1 + cps + be }e.a ey (ag) +
s <p1 ps) <p5 p7) po -+ bpy + epa + beps| e (a1)eg, (a2)

+ [PQ + bps + cpe + bCp7} e'f(a1)eg:(az).

*
J

Then Vi,j,ui’j = idim(,jiyj) and Vi’j’Mz‘,j =0 Zf ’i/ 75 1 or jl 7& j
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LeMMA 11. Let E(m)+1<i<ry andro+1<j <rg+ sy. Let

pij s im(vi ;) = FoQmon,

po(ew) pa(cs) pala;) pela;t)
| pala) ps(aa) ps(ai) pr(ag) |
P paen) polai) poley ) palay )

p3(ai) pr(ai) pi(a;?) ps(a;?)

— [po(a1)+bp1(a1)+cp2(a1)+bCp3(a1) e (a1)ey (az)+
+ [ps(ar) + bpa(ar) + epr(ar) + beps () | e (ar) e (a2).
Then v; jpij = idimy, ;) and vijpi; =0 if i # i or j' # j.
LEMMA 12, Letr1+1<i<ri+syandro+1<j<ro+sy. Let

Hi g - im(Vi,j) — Fqu,m

po(ci) pales) psley ) praa;t)
(@) ps(ew) poley ) prs(agt) .
M pa(as) polen) prolag ) pralo; )
ps(ai) pr(ei) pulegt) pis(eg™t)
[po(cu) + bp1(a1) + epz(ar) + bcp3(a1)]e”f(a1)e;fj az) +
) ;

— (a1) (
+ [p5(a1) + bpa(ar) + cpr(ar) + bcpﬁ(al)} em(al)e;‘; (a2) +
+ } (

k3

+ {P15 a1) + bpia(ai) + ep1z(ar) + bCpu(m)} efs(a1)eg: (az)-
Then v; j7ij = idim(y, ;) and vijipi; =0 if ' # i or j' # .
In the following theorem by the use of these lemmas we describe p~! and d~*.

TEOPEMA 3. (i) Let gcd(mn,q) =1 and let

r1+s1 T2+S2 r1+s1 r2+52

Z ZP’L]: @ @Bzy%]]?q@mn
=1 j=1 i=1 j=1

pigoy', (Em)+1<i<r)A(1<j<r)
pij = tijo; s (€M) +1<i<r)A(ra+1<j<ry+ss).
i g otherwise

Then p~' = p.
(ii) Let ged(2mn,q) = 1 and let

r1+s1 r2+S2

_ r1+81 T2+S2 B
d=2_ > dij: D D Ay FQun
i=1 j=1

i=1 j=1
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(gl (A <i<e€m)AQ<j<r)
“ivja;lTilea Em)+1<i<r) A1 <j<mr)

dij = ’uiJTi,_jl’ (Mm+1<i<rm+s)ANA<)<r)
HigTig s (1<i<&m))A(ra+1<j<ry+s9)
pijoi (EM)+1<i<r)A(ra+1<j<ro+s59)
i,j (rm+1<i<ri+s)A(ra+1<5<ry+59)

Then d~t = d.

JIOKABATEJILCTBO. Since p is of the form (6), directly computing from lemmas 8-12 we obtain

r1+81 T2+S2 r1+s1 r2+s2 r1+81 r2+S2 r1+81 12+S2
=B D X 2 riry =B D riri= D B ids,
i=1 j=1 =1 j'=1 i=1 j=1 i=1 j=1
Since p is an isomorphism (see theorem 1), it follows that p~! = p. This is also true in the case (ii).
O
Now we can describe the primitive central idempotents in Fy;Qy,  in the case ged(2mn,q) =1
and n | qg— 1.

TEOPEMA 4. Let ged(2mn,q) =1 and n | g — 1; then FyQp, , has

1) 4¢(m)re primitive central idempotents of the form

e+b+c+bc e+b—c—bc
Te?}(al)e;(ag), T@?j( 1)eg, (a2),

e—b+c—bc ,, n
Tefi( 1)eg; (az2),

where 1 <1 < &(m) and 1 < j <ry;

e—b—c—+be

S e aep ()

2) 2(r1 — &(m))ry primitive central idempotents of the form:

e—b e+b
ey (a2), (e (),
where §(m) +1 <i <7y and 1 < j <ro;
3) 2s1ry primitive central idempotents of the form:
e—b e+b
o (@) + ef(a) e (az), = (€flar) + efi(an) ) e, (az),
where r1 +1 <i<ri+s; and 1 < j < ry;
4) 2£(m)so primitive central idempotents of the form:
e—c e+c
ef(an) (o, (a2) + e (a2)) . e (@) (e, (a2) + e (az))

where 1 <1 < &(m) andro+1 < j < rg+ s9;

5) (r1 —&(m))sa primitive central idempotents of the form:
e (ar) (e (a) + € (a2) )

where Em) +1<i<ry andro+1<j <rg+ s9;
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6) s1s2 primitive central idempotents of the form:

(@) + e (an) ) (en (a2) + e (a2))
where r1 +1 <i<ri+s; andro+1< 35 <19+ s9.
JOKA3ATEJILCTBO. Let R be a semisimple ring and let
p:R>R SR D &Ry,

where R; are matrix rings over division rings, be the Wedderburn decomposition of R. It is well-
known (see [1], 2.6) that R has [ primitive central idempotents, and each one is of the form

=0 0020 L®0D---®0),

where I; € R; is the identity element.
Therefore, using theorems 2 and 3, we obtain 1)-6). Indeed, consider for example 1) in the case
1 =1 and j = 1. Using theorem 3 we get

d™((1,0,0,0) ® 080+ @0) = u 1771 (1,0,0,0).

By definitions of 71 ; from theorem 2 and j;; from theorem 3 we obtain

1—|—h1+h2+h1h2> _e+btctbe ,

M1,1Till(1,0,070) =11 ( 1 1 e'fy (a1)eg, (az2).

Similarly we can evaluate
d71((0,1,0,0)®0®0---@®0)...d"" ((0,0,0,1) B0 0--- @ 0)

and remaining primitive central idempotents for 1 < i < &(m) and 1 < j < ro.
Now let’s consider 2). In the case {(m) +1 < i <r; and 1 < j < ry using definitions of d and
i ; from theorem 3 and 7; ; from theorem 2 we get

e —

A 0@ 608 (E00)®0& - 60)=pjo; /7, (E®0) = ;(E+0h) =

efi(a1)ey, (az)
and

e+b
e (ar)el. (az),

d'0s-- @0 (0B E) @0 - ©0) = uijo, 7,

here E denotes the identity matrix and (0@ E), (E @ 0) € A; ;.
The remaining cases 3)—6) are proved in the same way. For example, let’s consider 6). In the
caser1+1<i<ri+siandro+1 <75 <19+ s we have

d'0e - 200 FE00® - ©0) = j(E) = (e?}(al) +e}’}(a1)) (e;‘j(ag) +e;‘;(a2)> ;

here E € A; ; is identity matrix. O

BAMEYAHUE 3. Note that, FqQm n splits into internal direct sum of minimal two—sided ideals
I, C FyQmpn. Each Iy is isomorphic to one of the simple direct summands in (12) and generated
by an idempotent from theorem 4.
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4. An application to algebraic codding theory

Now we can establish the structure of the group codes over @, . First, let us introduce the
notation. Define
L (1<i<&m)A(L<]f<r),
M(i,j) =94, (m+1<i<ri+s)A(r2+1<j<rs+sz),
2

otherwise
and
Fy, 1<i<&(n),
F; = Fq[ai+a;1], En)+1<i<nr,
Fqla], r+1<i<r+s.

Let k € N, let F be a field and V be a subspace of F¥; by Z(F, k, V) we denote the set of all
matrices K € My(F) such that Ko =0 for all v € V.

In [21], p. 93, it was proved that any left ideal of M (F) is of the form Z(FF, k, V) and there is
one-to-one correspondence between the left ideals of M (F) and the linear subspaces of F¥.

TEOPEMA 5. Let ged(2mn,q) =1 and n | (¢ —1). For any group code C C FqQp,r there exist
subspaces V; ;1 C FZ-M(Z’]) such that

r1+s1 r2+s2

dC)= P P Gy Cij= (14)
i=1 j=1

@it Z(Fi 1, Vi), (L<i<Em)A(L<)<r)
I(F;,2,Vij1) @ I(F, 2, Vij2), (§(m) +1<i<r)A(L<j <o)
_ JI(F2,Viga) © I(F;, 2, Viga), (m+1<i<ri4s)A(1<j<r) (1)
I(F;,2,Vig1) ®L(F;,2,Vij2), (1<i<Em))A(ra+1<j<rg+s2)
I(Fi747v;7j71)7 (g(m)+1Sigrl)/\(r2+1§jfr2+32)
I(FZ-,4, Vz‘,j,l), (7“1 +1<i<ry+ 31) A (7“2 +1<j5<rog+ 82)

Contrariwise, for any subspaces V; j i C FZ-M(i’j) the set

with C; j defined in (15), is a group code in FyQp, p.
JTOKABATENBLCTBO. Consider (12) from theorem 2. Let

r1+s1 12482

A=P P Ay
i=1 j=1

Since d : Fy@pm,n — A is an isomorphism, it follows that there is one-to-one correspondence
between the codes in FyQ,, , and the left ideals of A. It is well-known that any left ideal of a
direct sum of algebras is a direct sum of left ideals of summands. It is established that the ideals
of summands are of the form Z(F;,t,V; ;). Hence the theorem is entirely proved. O

Consider a group code C' C FyQ,,,n. We obliviously have the length of C equals to 4mn and
the dimension can be evaluated by following formula:

r1+81 T2+S2

dim(C) = > > dim(Ci ;).

i=1 j=1
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5. Conclusion

In the paper we considered the bidihedral group @, and its group algebra F;Q,, . In the case
ged(mn,q) =1 and n | ¢ — 1 we obtained the structural theorem for F;Q,y, ». Then we used it to
explicitly describe the Wedderburn decomposition of FqQyy, », in the case ged(2mn, ¢) = 1. Moreover,
we constructed inverse isomorphisms p~! and d~!, which helped us to describe the central primitive
idempotents of FyQ, -

Finally, we used the Wedderburn decomposition d and d~! to algebraically describe all codes in
FqQmn in the case gecd(2mn,q) = 1 and n | (¢ — 1). In addition, it is easy to find their length and
dimension.

Further research is needed to find among these codes promising classes of error—correcting codes
with good parameters and to construct decoders.
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