37,319 research outputs found

    The exp-log normal form of types

    Get PDF
    Lambda calculi with algebraic data types lie at the core of functional programming languages and proof assistants, but conceal at least two fundamental theoretical problems already in the presence of the simplest non-trivial data type, the sum type. First, we do not know of an explicit and implemented algorithm for deciding the beta-eta-equality of terms---and this in spite of the first decidability results proven two decades ago. Second, it is not clear how to decide when two types are essentially the same, i.e. isomorphic, in spite of the meta-theoretic results on decidability of the isomorphism. In this paper, we present the exp-log normal form of types---derived from the representation of exponential polynomials via the unary exponential and logarithmic functions---that any type built from arrows, products, and sums, can be isomorphically mapped to. The type normal form can be used as a simple heuristic for deciding type isomorphism, thanks to the fact that it is a systematic application of the high-school identities. We then show that the type normal form allows to reduce the standard beta-eta equational theory of the lambda calculus to a specialized version of itself, while preserving the completeness of equality on terms. We end by describing an alternative representation of normal terms of the lambda calculus with sums, together with a Coq-implemented converter into/from our new term calculus. The difference with the only other previously implemented heuristic for deciding interesting instances of eta-equality by Balat, Di Cosmo, and Fiore, is that we exploit the type information of terms substantially and this often allows us to obtain a canonical representation of terms without performing sophisticated term analyses

    Adventures in Formalisation: Financial Contracts, Modules, and Two-Level Type Theory

    Full text link
    We present three projects concerned with applications of proof assistants in the area of programming language theory and mathematics. The first project is about a certified compilation technique for a domain-specific programming language for financial contracts (the CL language). The code in CL is translated into a simple expression language well-suited for integration with software components implementing Monte Carlo simulation techniques (pricing engines). The compilation procedure is accompanied with formal proofs of correctness carried out in Coq. The second project presents techniques that allow for formal reasoning with nested and mutually inductive structures built up from finite maps and sets. The techniques, which build on the theory of nominal sets combined with the ability to work with isomorphic representations of finite maps, make it possible to give a formal treatment, in Coq, of a higher-order module system, including the ability to eliminate at compile time abstraction barriers introduced by the module system. The development is based on earlier work on static interpretation of modules and provides the foundation for a higher-order module language for Futhark, an optimising compiler targeting data-parallel architectures. The third project presents an implementation of two-level type theory, a version of Martin-Lof type theory with two equality types: the first acts as the usual equality of homotopy type theory, while the second allows us to reason about strict equality. In this system, we can formalise results of partially meta-theoretic nature. We develop and explore in details how two-level type theory can be implemented in a proof assistant, providing a prototype implementation in the proof assistant Lean. We demonstrate an application of two-level type theory by developing some results on the theory of inverse diagrams using our Lean implementation.Comment: PhD thesis defended in January 2018 at University of Copenhagen, Department of Computer Scienc

    A Case Study on Logical Relations using Contextual Types

    Full text link
    Proofs by logical relations play a key role to establish rich properties such as normalization or contextual equivalence. They are also challenging to mechanize. In this paper, we describe the completeness proof of algorithmic equality for simply typed lambda-terms by Crary where we reason about logically equivalent terms in the proof environment Beluga. There are three key aspects we rely upon: 1) we encode lambda-terms together with their operational semantics and algorithmic equality using higher-order abstract syntax 2) we directly encode the corresponding logical equivalence of well-typed lambda-terms using recursive types and higher-order functions 3) we exploit Beluga's support for contexts and the equational theory of simultaneous substitutions. This leads to a direct and compact mechanization, demonstrating Beluga's strength at formalizing logical relations proofs.Comment: In Proceedings LFMTP 2015, arXiv:1507.0759

    Explicit Substitutions for Contextual Type Theory

    Get PDF
    In this paper, we present an explicit substitution calculus which distinguishes between ordinary bound variables and meta-variables. Its typing discipline is derived from contextual modal type theory. We first present a dependently typed lambda calculus with explicit substitutions for ordinary variables and explicit meta-substitutions for meta-variables. We then present a weak head normalization procedure which performs both substitutions lazily and in a single pass thereby combining substitution walks for the two different classes of variables. Finally, we describe a bidirectional type checking algorithm which uses weak head normalization and prove soundness.Comment: In Proceedings LFMTP 2010, arXiv:1009.218

    Constraint Handling Rules with Binders, Patterns and Generic Quantification

    Full text link
    Constraint Handling Rules provide descriptions for constraint solvers. However, they fall short when those constraints specify some binding structure, like higher-rank types in a constraint-based type inference algorithm. In this paper, the term syntax of constraints is replaced by λ\lambda-tree syntax, in which binding is explicit; and a new ∇\nabla generic quantifier is introduced, which is used to create new fresh constants.Comment: Paper presented at the 33nd International Conference on Logic Programming (ICLP 2017), Melbourne, Australia, August 28 to September 1, 2017 16 pages, LaTeX, no PDF figure

    Formal Component-Based Semantics

    Get PDF
    One of the proposed solutions for improving the scalability of semantics of programming languages is Component-Based Semantics, introduced by Peter D. Mosses. It is expected that this framework can also be used effectively for modular meta theoretic reasoning. This paper presents a formalization of Component-Based Semantics in the theorem prover Coq. It is based on Modular SOS, a variant of SOS, and makes essential use of dependent types, while profiting from type classes. This formalization constitutes a contribution towards modular meta theoretic formalizations in theorem provers. As a small example, a modular proof of determinism of a mini-language is developed.Comment: In Proceedings SOS 2011, arXiv:1108.279
    • …
    corecore