Proofs by logical relations play a key role to establish rich properties such
as normalization or contextual equivalence. They are also challenging to
mechanize. In this paper, we describe the completeness proof of algorithmic
equality for simply typed lambda-terms by Crary where we reason about logically
equivalent terms in the proof environment Beluga. There are three key aspects
we rely upon: 1) we encode lambda-terms together with their operational
semantics and algorithmic equality using higher-order abstract syntax 2) we
directly encode the corresponding logical equivalence of well-typed
lambda-terms using recursive types and higher-order functions 3) we exploit
Beluga's support for contexts and the equational theory of simultaneous
substitutions. This leads to a direct and compact mechanization, demonstrating
Beluga's strength at formalizing logical relations proofs.Comment: In Proceedings LFMTP 2015, arXiv:1507.0759