4 research outputs found

    A Formal Approach to Support Interoperability in Scientific Meta-workflows

    Get PDF
    Scientific workflows orchestrate the execution of complex experiments frequently using distributed computing platforms. Meta-workflows represent an emerging type of such workflows which aim to reuse existing workflows from potentially different workflow systems to achieve more complex and experimentation minimizing workflow design and testing efforts. Workflow interoperability plays a profound role in achieving this objective. This paper is focused at fostering interoperability across meta-workflows that combine workflows of different workflow systems from diverse scientific domains. This is achieved by formalizing definitions of meta-workflow and its different types to standardize their data structures used to describe workflows to be published and shared via public repositories. The paper also includes thorough formalization of two workflow interoperability approaches based on this formal description: the coarse-grained and fine-grained workflow interoperability approach. The paper presents a case study from Astrophysics which successfully demonstrates the use of the concepts of meta-workflows and workflow interoperability within a scientific simulation platform

    Multi-level Meta-workflows: New Concept for Regularly Occurring Tasks in Quantum Chemistry

    Get PDF
    Background: In Quantum Chemistry, many tasks are reoccurring frequently, e.g. geometry optimizations, benchmarking series etc. Here, workflows can help to reduce the time of manual job definition and output extraction. These workflows are executed on computing infrastructures and may require large computing and data resources. Scientific workflows hide these infrastructures and the resources needed to run them. It requires significant efforts and specific expertise to design, implement and test these workflows. Significance: Many of these workflows are complex and monolithic entities that can be used for particular scientific experiments. Hence, their modification is not straightforward and it makes almost impossible to share them. To address these issues we propose developing atomic workflows and embedding them in meta-workflows. Atomic workflows deliver a well-defined research domain specific function. Publishing workflows in repositories enables workflow sharing inside and/or among scientific communities. We formally specify atomic and meta-workflows in order to define data structures to be used in repositories for uploading and sharing them. Additionally, we present a formal description focused at orchestration of atomic workflows into meta-workflows. Conclusions: We investigated the operations that represent basic functionalities in Quantum Chemistry and developed that relevant atomic workflows and combined them into meta-workflows. Having these workflows we defined the structure of the Quantum Chemistry workflow library and uploaded these workflows in the SHIWA Workflow Repository

    Meta-Metaworkflows for Combining Quantum Chemistry and Molecular Dynamics in the MoSGrid Science Gateway

    No full text

    Jahresbericht 2014 zur kooperativen DV-Versorgung

    Get PDF
    :VORWORT 9 ÜBERSICHT DER INSERENTEN 10 TEIL I ZUR ARBEIT DES IT-LENKUNGSAUSSCHUSSES 15 ZUR ARBEIT DES ERWEITERTEN IT-LENKUNGSAUSSCHUSSES 15 ZUR ARBEIT DES WISSENSCHAFTLICHEN BEIRATES DES ZIH 17 TEIL II 1 DAS ZENTRUM FÜR INFORMATIONSDIENSTE UND HOCHLEISTUNGSRECHNEN (ZIH) 21 1.2 ZAHLEN UND FAKTEN (REPRÄSENTATIVE AUSWAHL) 21 1.3 HAUSHALT 22 1.4 STRUKTUR / PERSONAL 23 1.5 STANDORT 24 1.6 GREMIENARBEIT 25 2 KOMMUNIKATIONSINFRASTRUKTUR 27 2.1 NUTZUNGSÜBERSICHT NETZDIENSTE 27 2.2 NETZWERKINFRASTRUKTUR 27 2.3 KOMMUNIKATIONS- UND INFORMATIONSDIENSTE 37 3 ZENTRALES DIENSTEANGEBOT 47 3.1 SERVICE DESK 47 3.2 TROUBLE TICKET SYSTEM (OTRS) 48 3.3 IDENTITÄTSMANAGEMENT 49 3.4 LOGIN-SERVICE 51 3.5 BEREITSTELLUNG VON VIRTUELLEN SERVERN 51 3.6 STORAGE-MANAGEMENT 52 3.7 PC-POOLS 58 3.8 SECURITY 59 3.9 LIZENZ-SERVICE 61 3.10 PERIPHERIE-SERVICE 61 3.11 DRESDEN SCIENCE CALENDAR 61 4 SERVICELEISTUNGEN FÜR DEZENTRALE DV-SYSTEME 63 4.1 ALLGEMEINES 63 4.2 INVESTBERATUNG 63 4.3 PC-SUPPORT 63 4.4 MICROSOFT WINDOWS-SUPPORT 64 4.5 ZENTRALE SOFTWARE-BESCHAFFUNG FÜR DIE TU DRESDEN 68 5 HOCHLEISTUNGSRECHNEN 71 5.1 HOCHLEISTUNGSRECHNER/SPEICHERKOMPLEX 71 5.2 NUTZUNGSÜBERSICHT DER HPC-SERVER 78 5.3 SPEZIALRESSOURCEN 79 5.4 GRID-RESSOURCEN 80 5.5 ANWENDUNGSSOFTWARE 81 5.6 VISUALISIERUNG 81 5.7 PARALLELE PROGRAMMIERWERKZEUGE 83 6 WISSENSCHAFTLICHE PROJEKTE UND KOOPERATIONEN 85 6.1 KOMPETENZZENTRUM FÜR VIDEOKONFERENZDIENSTE 85 6.2 SKALIERBARE SOFTWARE-WERKZEUGE ZUR UNTERSTÜTZUNG DER ANWENDUNGSOPTIMIERUNG AUF HPC-SYSTEMEN 89 6.3 LEISTUNGS- UND ENERGIEEFFIZIENZ-ANALYSE FÜR INNOVATIVE RECHNERARCHITEKTUREN 91 6.4 DATENINTENSIVES RECHNEN, VERTEILTES RECHNEN UND CLOUD COMPUTING 95 6.5 DATENANALYSE, METHODEN UND MODELLIERUNG IN DEN LIFE SCIENCES 97 6.6 PARALLELE PROGRAMMIERUNG, ALGORITHMEN UND METHODEN 99 6.7 INITIATIVBUDGET ZUR UNTERSTÜTZUNG VON KOOPERATIONSAUFGABEN DER SÄCHSISCHEN HOCHSCHULEN 103 6.8 KOOPERATIONEN 105 7 AUSBILDUNGSBETRIEB UND PRAKTIKA 107 7.1 AUSBILDUNG ZUM FACHINFORMATIKER / FACHRICHTUNG ANWENDUNGSENTWICKLUNG 107 7.2 PRAKTIKA 108 8 VERANSTALTUNGEN 109 8.1 AUS- UND WEITERBILDUNGSVERANSTALTUNGEN 109 8.2 NUTZERSCHULUNGEN 110 8.3 ZIH-KOLLOQUIEN 110 8.4 ZIH-SEMINARE 110 8.5 KONFERENZEN 110 8.6 WORKSHOPS 110 8.7 STANDPRÄSENTATIONEN/’VORTRÄGE/FÜHRUNGEN 110 9 PUBLIKATIONEN 113 TEIL III BERICHTE BIOTECHNOLOGISCHES ZENTRUM (BIOTEC) ZENTRUM FÜR REGENERATIVE THERAPIEN (CRTD) ZENTRUM FÜR INNOVATIONSKOMPETENZ (B CUBE) 121 BOTANISCHER GARTEN 127 INTERNATIONALES HOCHSCHULINSTITUT ZITTAU (IHI) 132 LEHRZENTRUM SPRACHEN UND KULTURRÄUME (LSK) 133 MEDIENZENTRUM (MZ) 139 UNIVERSITÄTSSPORTZENTRUM (USZ) 155 ZENTRUM FÜR INTERNATIONALE STUDIEN (ZIS) 157 ZENTRALE UNIVERSITÄTSVERWALTUNG (ZUV) 15
    corecore