6,048 research outputs found
New theory of femtosecond induced changes and nanopore formation
Recent results confirm the presence of molecular oxygen proving that
recombination of dissociated silica bonds does not occur. This combined with
the observation of nanopores within the nanograting structure in silica, leads
to a new interpretation of femtosecond processing based on the unusual
characteristics of quenching of tetrahedral silica compared to other glasses.
This new approach suggests very different directions and implications for
devices, including sensors, based on femtosecond laser processing of glasses.Comment: Submitted to 3rd Asia Pacific Optical Sensors Conference, Sydney,
Australi
Mesostructured zeolites: bridging the gap between zeolites and MCM-41
Surfactant-templating is one of the most versatile and useful techniques to implement mesoporous systems into solid materials. Various strategies based on various interactions between surfactants and solid precursors have been explored to produce new structures. Zeolites are invaluable as size- and shape-selective solid acid catalysts. Nevertheless, their micropores impose limitations on the mass transport of bulky feed and/or product molecules. Many studies have attempted to address this by utilizing surfactant-assisting technology to alleviate the diffusion constraints. However, most efforts have failed due to micro/mesopore phase separation. Recently, a new technique combining the uses of cationic surfactants and mild basic solutions was introduced to synthesise mesostructured zeolites. These materials sustain the unique characteristics of zeolites (i.e., strong acidity, crystallinity, microporosity, and hydrothermal stability), including tunable mesopore sizes and degrees of mesoporosity. The mesostructured zeolites are now commercially available through Rive Technology, and show superior performance in VGO cracking. This feature article provides an overview of recent explorations in the introduction of mesoporosity into zeolites using surfactant-templating techniques. Various porous materials, preparation methods, physical and catalytic properties of mesostructured zeolites will be discussed
Surface characterization and properties of ordered arrays of CeO2 nanoparticles embedded in thin layers of SiO2
We demonstrated the surface composite character down to the nanometer scale of SiO2-CeO2 composite high surface area materials, prepared using 5 nm colloidal CeO2 nanoparticle building blocks. These materials are made of a homogeneous distribution of CeO2 nanoparticles in thin layers of SiO2, arranged in a hexagonal symmetry as shown by small-angle X-ray scattering and transmission electron microscopy. Since the preparation route of these composite materials was selected in order to produce SiO2 wall thickness in the range of the CeO2 nanoparticle diameter, these materials display surface nanorugosity as shown by inverse chromatography. Accessibility through the porous volume to the functional CeO2 nanoparticle surfaceswasevidenced throughanorganic acid chemisorption technique allowing quantitative determination of CeO2 surface ratio. This surface composite nanostructure down to the nanometer scale does not affect the fundamental properties of the functional CeO2 nanodomains, such as their oxygen storage capacity, but modifies the acid-base properties of the CeO2 surface nanodomains as evidenced by Fourier transform IR technique. These arrays of accessible CeO2 nanoparticles displaying high surface area and high thermal stability, along with the possibility of tuning their acid base properties, will exhibit potentialities for catalysis, sensors, etc
Catalytic Behaviour of Mesoporous Cobalt-Aluminum Oxides for CO Oxidation
Ordered mesoporous materials are promising catalyst supports due to their uniform pore size distribution, high specific surface area and pore volume, tunable pore sizes, and long-range ordering of the pore packing. The evaporation-induced self-assembly (EISA) process was applied to synthesize mesoporous mixed oxides, which consist of cobalt ions highly dispersed in an alumina matrix. The characterization of the mesoporous mixed cobalt-aluminum oxides with cobalt loadings in the range from 5 to 15 wt% and calcination temperatures of 673, 973, and 1073 K indicates that Co2+ is homogeneously distributed in the mesoporous alumina matrix. As a function of the Co loading, different phases are present comprising poorly crystalline alumina and mixed cobalt aluminum oxides of the spinel type. The mixed cobalt-aluminum oxides were applied as catalysts in CO oxidation and turned out to be highly active.Fil: Bordoloi, Ankur. Indian Institute of Petroleum; IndiaFil: Sanchez, Miguel Dario. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Física del Sur. Universidad Nacional del Sur. Departamento de Física. Instituto de Física del Sur; ArgentinaFil: Noei, Heshmat. Research Group X-Ray Physics and Nanoscience Deutsches Elektronen-Synchrotron; AlemaniaFil: Kaluza, Stefan. Fraunhofer Institute of Environmental, Safety, and Energy Technology; AlemaniaFil: Großmann, Dennis. Ruhr Universität Bochum; AlemaniaFil: Wang, Yuemin. Ruhr Universität Bochum; AlemaniaFil: Grünert, Wolfgang. Ruhr Universität Bochum; AlemaniaFil: Muhler, Martin. Ruhr Universität Bochum; Alemani
Nanogels for pharmaceutical and biomedical applications and their fabrication using 3D printing technologies
Nanogels are hydrogels formed by connecting nanoscopic micelles dispersed in an aqueous medium, which give an opportunity for incorporating hydrophilic payloads to the exterior of the micellar networks and hydrophobic payloads in the core of the micelles. Biomedical and pharmaceutical applications of nanogels have been explored for tissue regeneration, wound healing, surgical device, implantation, and peroral, rectal, vaginal, ocular, and transdermal drug delivery. Although it is still in the early stages of development, due to the increasing demands of precise nanogel production to be utilized for personalized medicine, biomedical applications, and specialized drug delivery, 3D printing has been explored in the past few years and is believed to be one of the most precise, efficient, inexpensive, customizable, and convenient manufacturing techniques for nanogel production
Influence of mesostructuration on the reactivity of bioactive glasses in biological medium: a PIXE-RBS study
Building mesostructured biomaterials is a challenging and exciting task that has attracted much attention because of their use as drug carriers or drug delivery systems. In the case of bioactive materials, the mesostructuration can also deeply impact their physico-chemical properties and the reactivity. In this study, we show how highly ordered mesoporosity influences the early steps of the biomineralization process and the reactivity in binary (SiO2–CaO) and ternary (SiO2–CaO–P2O5) bioactive glasses. Conventional porous sol–gel glasses were synthesized using a classical route, while mesostructured glasses were developed using a non-ionic surfactant. Textural properties of these materials have been characterized. The in vitro biomineralization process was followed, using Particle Induced X-ray Emission (PIXE) associated to Rutherford Backscattering Spectrometry (RBS), which are efficient methods for a highly sensitive multi-elemental analysis. Elemental maps of silicon, calcium and phosphorus were obtained at a micrometer scale and revealed for the first time a bulk reactivity for mesostructured glasses. This is a major advantage over conventional glasses, for which the first steps of biomineralization are limited to the periphery of the material. Their enhanced bioactivity combined with their possible use as drug-delivery systems make them promising candidates for bone regeneration
Copper-containing mesoporous bioactive glass promotes angiogenesis in an in vivo zebrafish model
The osteogenic and angiogenic responses of organisms to the ionic products of degradation of bioactive glasses (BGs) are being intensively investigated. The promotion of angiogenesis by copper (Cu) has been known for more than three decades. This element can be incorporated to delivery carriers, such as BGs, and the materials used in biological assays. In this work, Cu-containing mesoporous bioactive glass (MBG) in the SiO2-CaO-P2O5 compositional system was prepared incorporating 5% mol Cu (MBG-5Cu) by replacement of the corresponding amount of Ca. The biological effects of the ionic products of MBG
biodegradation were evaluated on a well-known endothelial cell line, the bovine aorta endothelial cells (BAEC), as well as in an in vivo zebrafish (Danio rerio) embryo assay. The results suggest that ionic products of both MBG (Cu free) and MBG-5Cu materials promote angiogenesis. In vitro cell cultures show that the ionic dissolution products of these materials are not toxic and promote BAEC viability and migration.
In addition, the in vivo assay indicates that both exposition and microinjection of zebrafish embryos with Cu free MBG material increase vessel number and thickness of the subintestinal venous plexus (SIVP), whereas assays using MBG-5Cu enhance this effect.The authors gratefully acknowledge the financial support provided by the Andalusian Ministry of Economy, Science and Innovation
(Proyectos Excelencia Grants no. P10-CTS-6681 and no. P12-CTS-1507) and Spanish Ministry of Economy and Competitivity
(BIO2014-56092-R). LBRS acknowledges the CONACYT-Mexico Fellowship PhD Program
Synthesis of carbon nanotubes-mesostructured silica nanoparticles composites for adsorption of methylene blue
The mesostructured silica nanoparticles (MSN) have been widely developed for the removal of various pollutants due to their highly porous structure and other novel features. While carbon nanotubes (CNT) are attracting great interest owing to its large specific surface area, small size, hollow and layered structures. The integration of these outstanding properties by modification of MSN with singlewalled CNT (SWCNT) and multiwalled CNT (MWCNT) is quite new in this area of study and is expected to produce an adsorbent with higher adsorption capacity. In this study, three types of adsorbents were prepared by a simple one step method; MSN, series of SWCNT-MSN composites, and series of MWCNT-MSN composites. Their characteristics have been observed by XRD, N2 physisorption, FTIR, TEM, and FESEM, while their adsorption performance were evaluated on the adsorption of methylene blue (MB) at various pH, adsorbent dosage, initial MB concentration, and temperature. The results demonstrated that the adsorbents were prepared with mesoporous structures and produces relatively higher number of pores with larger diameters. The CNTs were found to improve the physicochemical properties of the MSN and led to an enhanced adsorptivity for MB. N2 physisorption measurements revealed the development of a bimodal pore structure in MWCNT-MSN composites that increased the pore size, pore volume and surface area. The best conditions for MSN, SWCNT-MSN and MWCNT-MSN composites achieved at pH 7 and 303 K using 0.05 g L-1 adsorbent and 100 mg L-1 MB. Fitting with linear Langmuir isotherm produce the maximum adsorption capacity of 500.1 mg g-1, 500.0 mg g-1, and 263.2 mg g-1 for MSNAP, SWCNT-MSN and MWCNT-MSN, respectively. The equilibrium data were evaluated using the Langmuir, Freundlich, Temkin, and Dubinin-Radushkevich isotherm models, with the Freundlich model affording the best fit to the adsorption data for MSN and Langmuir model for both SWCNT-MSN and MWCNT-MSN. The adsorption kinetics for all MSN, SWCNT-MSN and MWCNT-MSN were best described by the pseudo-second order model. Thermodynamic study showed that the nature of MSNs and MWCNT-MSNs are exothermic, and endothermic for SWCNT-MSNs. This study is proven to produce a relatively new and potential mesostructured materials used as adsorbent for dye removal and water treatment
Solid mesostructured polymer-surfactant films at the air-liquid interface
Pioneering work by Edler et al. has spawned a new sub-set of mesostructured materials. These are solid, self-supporting films comprising surfactant micelles encased within polymer hydrogel; composite polymer-surfactant films can be grown spontaneously at the air-liquid interface and have defined and controllable mesostructures. Addition of siliconalkoxide to polymer-surfactant mixtures allows for the growth of mesostructured hybrid polymer-surfactant silica films that retain film geometry after calcinations and exhibit superior mechanical properties to typically brittle inorganic films. Growing films at the air-liquid interface provides a rapid and simple means to prepare ordered solid inorganic films, and to date the only method for generating mesostructured films thick enough (up to several hundred microns) to be removed from the interface. Applications of these films could range from catalysis to encapsulation of hydrophobic species and drug delivery. Film properties and mesostructures are sensitive to surfactant structure, polymer properties and polymer-surfactant phase behaviour: herein it will be shown how film mesostructure can be tailored by directing these parameters, and some interesting analogies will be drawn with more familiar mesostructured silica materials.</p
- …
