4,115 research outputs found
Recommended from our members
Manufacturing Metallic Parts with Designed Mesostructure via Three-Dimensional Printing of Metal Oxide Powder
Cellular materials, metallic bodies with gaseous voids, are a promising class of materials that offer
high strength accompanied by a relatively low mass. In this paper, the authors investigate the use of ThreeDimensional Printing (3DP) to manufacture metallic cellular materials by selectively printing binder into a
bed of metal oxide ceramic powder. The resulting green part undergoes a thermal chemical post-process in
order to convert it to metal. As a result of their investigation, the authors are able to create cellular
materials made of maraging steel that feature wall sizes as small as 400 µm and angled trusses and channels
that are 1 mm in diameter.Mechanical Engineerin
Entangled single-wire NiTi material: a porous metal with tunable superelastic and shape memory properties
NiTi porous materials with unprecedented superelasticity and shape memory
were manufactured by self-entangling, compacting and heat treating NiTi wires.
The versatile processing route used here allows to produce entanglements of
either superelastic or ferroelastic wires with tunable mesostructures. Three
dimensional (3D) X-ray microtomography shows that the entanglement
mesostructure is homogeneous and isotropic. The thermomechanical compressive
behavior of the entanglements was studied using optical measurements of the
local strain field. At all relative densities investigated here ( 25 -
40), entanglements with superelastic wires exhibit remarkable macroscale
superelasticity, even after compressions up to 25, large damping capacity,
discrete memory effect and weak strain-rate and temperature dependencies.
Entanglements with ferroelastic wires resemble standard elastoplastic fibrous
systems with pronounced residual strain after unloading. However, a full
recovery is obtained by heating the samples, demonstrating a large shape memory
effect at least up to 16% strain.Comment: 31 pages, 10 figures, submitted to Acta Materiali
A quadtree-polygon-based scaled boundary finite element method for image-based mesoscale fracture modelling in concrete
A quadtree-polygon scaled boundary finite element-based approach for image-based modelling of concrete fracture at the mesoscale is developed. Digital images representing the two-phase mesostructure of concrete, which comprises of coarse aggregates and mortar are either generated using a take-and-place algorithm with a user-defined aggregate volume ratio or obtained from X-ray computed tomography as an input. The digital images are automatically discretised for analysis by applying a balanced quadtree decomposition in combination with a smoothing operation. The scaled boundary finite element method is applied to model the constituents in the concrete mesostructure. A quadtree formulation within the framework of the scaled boundary finite element method is advantageous in that the displacement compatibility between the cells are automatically preserved even in the presence of hanging nodes. Moreover, the geometric flexibility of the scaled boundary finite element method facilitates the use of arbitrary sided polygons, allowing better representation of the aggregate boundaries. The computational burden is significantly reduced as there are only finite number of cell types in a balanced quadtree mesh. The cells in the mesh are connected to each other using cohesive interface elements with appropriate softening laws to model the fracture of the mesostructure. Parametric studies are carried out on concrete specimens subjected to uniaxial tension to investigate the effects of various parameters e.g. aggregate size distribution, porosity and aggregate volume ratio on the fracture of concrete at the meso-scale. Mesoscale fracture of concrete specimens obtained from X-ray computed tomography scans are carried out to demonstrate its feasibility
Hierarchically structured biphenylene-bridged periodic mesoporous organosilica
Novel composites of highly ordered and stable biphenyl-bridged periodic mesoporous organosilica (PMO) materials confined within the pores of anodic alumina membranes (AAM) were successfully synthesized by evaporation-induced self-assembly (EISA). 4,40-Bis(triethoxysilyl)biphenyl (BTEBP) was used as a precursor in combination with the ionic surfactant cetyltrimethylammonium bromide (CTAB) or triblock-copolymer F127 as structure-directing agents. The resulting mesophases were characterized by small angle X-ray scattering (SAXS) and transmission electron microscopy (TEM). With ionic CTAB as a structure directing agent, samples with a mixture of the 2D-hexagonal columnar and a lamellar mesophase were obtained within the AAM channels. When using the nonionic surfactant F127, mesophases with a 2D-hexagonal circular structure were formed in the AAM channels. Additionally, a cubic Im3m phase could also be obtained with the same nonionic surfactant after the addition of lithium chloride to the precursor solution. The stability of both the circular and cubic biphenylene-bridged PMO against calcination temperatures of up to 250 °C was confirmed by NMR spectroscopy. Nitrogen sorption in the porous composite membrane shows typical type IV isotherms and narrow pore size distributions. All the biphenyl PMO/AAM composites show fluorescence due to the existence of biphenyl chromophores in the stable organosilica framework
The bulge in the basal plane area of cuprate superconductors - evidence for 3a singlet hole pairs
The bulge in the doping dependence of the basal plane area in hole doped
cuprate superconductors is connected with a non-double-occupancy constraint for
the oxygen cages in the CuO_2 lattice. This constraint favors the formation of
3a hole pairs growing to filaments with gapless excitations along the (pi, pi)
direction. Thus in the pseudogap regime a nodal metal of hole pairs is created.
Densest packed 3a hole pairs stabilize the optimum doped state at n =1/6 ~
0.16.Comment: 2 pages, 2 figures, submitted to Physica C (Proceedings of the
M2S-HTSC-VIII Conference, Dresden, Germany
Role of material properties and mesostructure on dynamic deformation and shear instability in Al-W granular composites
Dynamic experiments with Al-W granular/porous composites revealed
qualitatively different behavior with respect to shear localization depending
on bonding between Al particles. Two-dimensional numerical modeling was used to
explore the mesomechanics of the large strain dynamic deformation in Al-W
granular/porous composites and explain the experimentally observed differences
in shear localization between composites with various mesostructures.
Specifically, the bonding between the Al particles, the porosity, the roles of
the relative particle sizes of Al and W, the arrangements of the W particles,
and the material properties of Al were investigated using numerical
calculations. It was demonstrated in simulations that the bonding between the
"soft" Al particles facilitated shear localization as seen in the experiments.
Numerical calculations and experiments revealed that the mechanism of the shear
localization in granular composites is mainly due to the local high strain flow
of "soft" Al around the "rigid" W particles causing localized damage
accumulation and subsequent growth of the meso/macro shear bands/cracks. The
"rigid" W particles were the major geometrical factor determining the
initiation and propagation of "kinked" shear bands in the matrix of "soft" Al
particles, leaving some areas free of extensive plastic deformation as observed
in experiments and numerical calculations.Comment: 10 pages, 14 figures, submitted to Journal of Applied Physic
Mechanisms of fragmentation of Al-W granular composites under dynamic loading
Numerical simulations of Aluminum (Al) and Tungsten (W) granular composite
rings under various dynamic loading conditions caused by explosive loading were
examined. Three competing mechanisms of fragmentation were observed: a
continuum level mechanism generating large macrocracks described by the
Grady-Kipp fragmentation mechanism, a mesoscale mechanism generating voids and
microcracks near the initially unbonded Al/W interfaces due to tensile strains,
and a mesoscale jetting due to the development of large velocity gradients
between the W particles and adjacent Al. These mesoscale mechanisms can be used
to tailor the size of the fragments by selecting an appropriate initial
mesostructure for a given loading condition.Comment: 10 pages, 3 figures, submitted to AP
- …
