11 research outputs found

    Meshing Genus-1 Point Clouds Using Discrete One-Forms

    Get PDF
    We present an algorithm to mesh point clouds sampled from a closed manifold surface of genus 1. The method relies on a doubly periodic global parameterization of the point cloud to the plane, so no segmentation of the point cloud is required. Based on some recent techniques for parameterizing higher genus meshes, when some mild conditions on the sampling density are satisfied, the algorithm generates a closed toroidal manifold which interpolates the input and is geometrically similar to the sampled surface.Engineering and Applied Science

    Minimum cycle and homology bases of surface embedded graphs

    Get PDF
    We study the problems of finding a minimum cycle basis (a minimum weight set of cycles that form a basis for the cycle space) and a minimum homology basis (a minimum weight set of cycles that generates the 11-dimensional (Z2\mathbb{Z}_2)-homology classes) of an undirected graph embedded on a surface. The problems are closely related, because the minimum cycle basis of a graph contains its minimum homology basis, and the minimum homology basis of the 11-skeleton of any graph is exactly its minimum cycle basis. For the minimum cycle basis problem, we give a deterministic O(nω+22gn2+m)O(n^\omega+2^{2g}n^2+m)-time algorithm for graphs embedded on an orientable surface of genus gg. The best known existing algorithms for surface embedded graphs are those for general graphs: an O(mω)O(m^\omega) time Monte Carlo algorithm and a deterministic O(nm2/logn+n2m)O(nm^2/\log n + n^2 m) time algorithm. For the minimum homology basis problem, we give a deterministic O((g+b)3nlogn+m)O((g+b)^3 n \log n + m)-time algorithm for graphs embedded on an orientable or non-orientable surface of genus gg with bb boundary components, assuming shortest paths are unique, improving on existing algorithms for many values of gg and nn. The assumption of unique shortest paths can be avoided with high probability using randomization or deterministically by increasing the running time of the homology basis algorithm by a factor of O(logn)O(\log n).Comment: A preliminary version of this work was presented at the 32nd Annual International Symposium on Computational Geometr

    Free-boundary conformal parameterization of point clouds

    Full text link
    With the advancement in 3D scanning technology, there has been a surge of interest in the use of point clouds in science and engineering. To facilitate the computations and analyses of point clouds, prior works have considered parameterizing them onto some simple planar domains with a fixed boundary shape such as a unit circle or a rectangle. However, the geometry of the fixed shape may lead to some undesirable distortion in the parameterization. It is therefore more natural to consider free-boundary conformal parameterizations of point clouds, which minimize the local geometric distortion of the mapping without constraining the overall shape. In this work, we develop a free-boundary conformal parameterization method for disk-type point clouds, which involves a novel approximation scheme of the point cloud Laplacian with accumulated cotangent weights together with a special treatment at the boundary points. With the aid of the free-boundary conformal parameterization, high-quality point cloud meshing can be easily achieved. Furthermore, we show that using the idea of conformal welding in complex analysis, the point cloud conformal parameterization can be computed in a divide-and-conquer manner. Experimental results are presented to demonstrate the effectiveness of the proposed method

    An Algorithm for Minimum Cycle Basis of Graphs

    Get PDF

    Doctor of Philosophy

    Get PDF
    dissertationThe medial axis of an object is a shape descriptor that intuitively presents the morphology or structure of the object as well as intrinsic geometric properties of the object’s shape. These properties have made the medial axis a vital ingredient for shape analysis applications, and therefore the computation of which is a fundamental problem in computational geometry. This dissertation presents new methods for accurately computing the 2D medial axis of planar objects bounded by B-spline curves, and the 3D medial axis of objects bounded by B-spline surfaces. The proposed methods for the 3D case are the first techniques that automatically compute the complete medial axis along with its topological structure directly from smooth boundary representations. Our approach is based on the eikonal (grassfire) flow where the boundary is offset along the inward normal direction. As the boundary deforms, different regions start intersecting with each other to create the medial axis. In the generic situation, the (self-) intersection set is born at certain creation-type transition points, then grows and undergoes intermediate transitions at special isolated points, and finally ends at annihilation-type transition points. The intersection set evolves smoothly in between transition points. Our approach first computes and classifies all types of transition points. The medial axis is then computed as a time trace of the evolving intersection set of the boundary using theoretically derived evolution vector fields. This dynamic approach enables accurate tracking of elements of the medial axis as they evolve and thus also enables computation of topological structure of the solution. Accurate computation of geometry and topology of 3D medial axes enables a new graph-theoretic method for shape analysis of objects represented with B-spline surfaces. Structural components are computed via the cycle basis of the graph representing the 1-complex of a 3D medial axis. This enables medial axis based surface segmentation, and structure based surface region selection and modification. We also present a new approach for structural analysis of 3D objects based on scalar functions defined on their surfaces. This approach is enabled by accurate computation of geometry and structure of 2D medial axes of level sets of the scalar functions. Edge curves of the 3D medial axis correspond to a subset of ridges on the bounding surfaces. Ridges are extremal curves of principal curvatures on a surface indicating salient intrinsic features of its shape, and hence are of particular interest as tools for shape analysis. This dissertation presents a new algorithm for accurately extracting all ridges directly from B-spline surfaces. The proposed technique is also extended to accurately extract ridges from isosurfaces of volumetric data using smooth implicit B-spline representations. Accurate ridge curves enable new higher-order methods for surface analysis. We present a new definition of salient regions in order to capture geometrically significant surface regions in the neighborhood of ridges as well as to identify salient segments of ridges

    A Measure of Vision Distance for Optimization of Camera Networks

    Get PDF
    This dissertation proposes a solution to the problem of multi-camera deployment for optimization of visual coverage and image quality. Image quality and coverage are, by nature, difficult to quantify objectively. However, the chief difficulty is that, in the most general case, image quality and coverage are functions of many parameters, thus making any model of the vision system inherently complex. Additionally, these parameters are members of metric spaces that are not compatible amongst themselves under any known operators. This dissertation borrows the idea of transforming the mathematical definitions that describe the vision system into geometric constraints, and sets out to construct a geometrical model of the vision system. The vision system can be divided into two different concepts: the camera and the task. Whereas the camera has a set of parameters that describe it, the task also has a set of task parameters that quantify the visual requirements. The definition of the proposed geometric model involves the construction of a tensor; a mathematical construct of high dimensionality which enables a representation of the camera or the task. The tensor-based representation of these concepts is a powerful tool because it brings a large tool set from various disciplines such as differential geometry. The contributions of this dissertation are twofold. Firstly, a new distance function that effectively measures the distance between two visual entities is presented based on the geometrical model of the vision system. A visual entity may be a camera or a task. This distance is termed the Vision Distance and it measures the closeness to the optimal state for the configuration between the camera and the task. Lastly, a deployment method for multi-camera networks based on convex optimization is presented. Using second-order cone programming, this work shows how to optimize the position and orientation of a camera for maximum coverage of a task. This dissertation substantiates all of these claims. The vision distance is validated and compared to an existing model of visual coverage. Additionally, simulations, experiments, and comparisons show the efficacy of the proposed deployment method
    corecore