60 research outputs found

    Quantum Cuts: A Quantum Mechanical Spectral Graph Partitioning Method for Salient Object Detection

    Get PDF
    The increasing number of cameras, their availability to the end user and the social media platforms gave rise to the massive repositories of today’s Big Data. The largest portion of this data corresponds to unstructured image and video collections. This fact motivates the development of algorithms that would help efficient management and organization of the Big Data. This processing usually involves high level Computer Vision tasks such as object detection and recognition whose accuracy and complexity are therefore crucial. Salient object detection, which can be defined as highlighting the regions that visually stand out from the rest of the environment, can both reduce the complexity and improve the accuracy of object detection and recognition. Thus, recently there has been a growing interest in this topic. This interest is also due to many other applications of salient object detection such as media compression and summarization.This thesis focuses on this crucial problem and presents novel approaches and methods for salient object detection in digital media, using the principles of Quantum Mechanics. The contributions of this thesis can be categorized chronologically into three parts. First part is constituted of a direct application of ideas originally proposed for describing the wave nature of particles in Quantum Mechanics and expressed through Schrödinger’s Equation, to salient object detection in images. The significance of this contribution is the fact that, to the best of our knowledge, this is the first study that proposes a realizable quantum mechanical system for salient object proposals yielding an instantaneous speed in a possible physical implementation in the quantum scale.The second and main contribution of this thesis, is a spectral graph based salient object detection method, namely Quantum-Cuts. Despite the success of spectral graph based methods in many Computer Vision tasks, traditional approaches on applications of spectral graph partitioning methods offer little for the salient object detection problem which can be mapped as a foreground segmentation problem using graphs. Thus, Quantum-Cuts adopts a novel approach to spectral graph partitioning by integrating quantum mechanical concepts to Spectral Graph Theory. In particular, the probabilistic interpretation of quantum mechanical wave-functions and the unary potential fields in Quantum Mechanics when combined with the pairwise graph affinities that are widely used in Spectral Graph Theory, results into a unique optimization problem that formulates salient object detection. The optimal solution of a relaxed version of this problem is obtained via Quantum-Cuts and is proven to efficiently represent salient object regions in images.The third part of the contributions cover improvements on Quantum-Cuts by analyzing the main factors that affect its performance in salient object detection. Particularly, both unsupervised and supervised approaches are adopted in improving the exploited graph representation. The extensions on Quantum-Cuts led to computationally efficient algorithms that perform superior to the state-of-the-art in salient object detectio

    ISCR Annual Report: Fical Year 2004

    Full text link

    Segmentation mutuelle d'objets d'intérêt dans des séquences d'images stéréo multispectrales

    Get PDF
    Les systèmes de vidéosurveillance automatisés actuellement déployés dans le monde sont encore bien loin de ceux qui sont représentés depuis des années dans les oeuvres de sciencefiction. Une des raisons derrière ce retard de développement est le manque d’outils de bas niveau permettant de traiter les données brutes captées sur le terrain. Le pré-traitement de ces données sert à réduire la quantité d’information qui transige vers des serveurs centralisés, qui eux effectuent l’interprétation complète du contenu visuel capté. L’identification d’objets d’intérêt dans les images brutes à partir de leur mouvement est un exemple de pré-traitement qui peut être réalisé. Toutefois, dans un contexte de vidéosurveillance, une méthode de pré-traitement ne peut généralement pas se fier à un modèle d’apparence ou de forme qui caractérise ces objets, car leur nature exacte n’est pas connue d’avance. Cela complique donc l’élaboration des méthodes de traitement de bas niveau. Dans cette thèse, nous présentons différentes méthodes permettant de détecter et de segmenter des objets d’intérêt à partir de séquences vidéo de manière complètement automatisée. Nous explorons d’abord les approches de segmentation vidéo monoculaire par soustraction d’arrière-plan. Ces approches se basent sur l’idée que l’arrière-plan d’une scène peut être modélisé au fil du temps, et que toute variation importante d’apparence non prédite par le modèle dévoile en fait la présence d’un objet en intrusion. Le principal défi devant être relevé par ce type de méthode est que leur modèle d’arrière-plan doit pouvoir s’adapter aux changements dynamiques des conditions d’observation de la scène. La méthode conçue doit aussi pouvoir rester sensible à l’apparition de nouveaux objets d’intérêt, malgré cette robustesse accrue aux comportements dynamiques prévisibles. Nous proposons deux méthodes introduisant différentes techniques de modélisation qui permettent de mieux caractériser l’apparence de l’arrière-plan sans que le modèle soit affecté par les changements d’illumination, et qui analysent la persistance locale de l’arrière-plan afin de mieux détecter les objets d’intérêt temporairement immobilisés. Nous introduisons aussi de nouveaux mécanismes de rétroaction servant à ajuster les hyperparamètres de nos méthodes en fonction du dynamisme observé de la scène et de la qualité des résultats produits.----------ABSTRACT: The automated video surveillance systems currently deployed around the world are still quite far in terms of capabilities from the ones that have inspired countless science fiction works over the past few years. One of the reasons behind this lag in development is the lack of lowlevel tools that allow raw image data to be processed directly in the field. This preprocessing is used to reduce the amount of information transferred to centralized servers that have to interpret the captured visual content for further use. The identification of objects of interest in raw images based on motion is an example of a reprocessing step that might be required by a large system. However, in a surveillance context, the preprocessing method can seldom rely on an appearance or shape model to recognize these objects since their exact nature cannot be known exactly in advance. This complicates the elaboration of low-level image processing methods. In this thesis, we present different methods that detect and segment objects of interest from video sequences in a fully unsupervised fashion. We first explore monocular video segmentation approaches based on background subtraction. These approaches are based on the idea that the background of an observed scene can be modeled over time, and that any drastic variation in appearance that is not predicted by the model actually reveals the presence of an intruding object. The main challenge that must be met by background subtraction methods is that their model should be able to adapt to dynamic changes in scene conditions. The designed methods must also remain sensitive to the emergence of new objects of interest despite this increased robustness to predictable dynamic scene behaviors. We propose two methods that introduce different modeling techniques to improve background appearance description in an illumination-invariant way, and that analyze local background persistence to improve the detection of temporarily stationary objects. We also introduce new feedback mechanisms used to adjust the hyperparameters of our methods based on the observed dynamics of the scene and the quality of the generated output

    Motor learning induced neuroplasticity in minimally invasive surgery

    Get PDF
    Technical skills in surgery have become more complex and challenging to acquire since the introduction of technological aids, particularly in the arena of Minimally Invasive Surgery. Additional challenges posed by reforms to surgical careers and increased public scrutiny, have propelled identification of methods to assess and acquire MIS technical skills. Although validated objective assessments have been developed to assess motor skills requisite for MIS, they poorly understand the development of expertise. Motor skills learning, is indirectly observable, an internal process leading to relative permanent changes in the central nervous system. Advances in functional neuroimaging permit direct interrogation of evolving patterns of brain function associated with motor learning due to the property of neuroplasticity and has been used on surgeons to identify the neural correlates for technical skills acquisition and the impact of new technology. However significant gaps exist in understanding neuroplasticity underlying learning complex bimanual MIS skills. In this thesis the available evidence on applying functional neuroimaging towards assessment and enhancing operative performance in the field of surgery has been synthesized. The purpose of this thesis was to evaluate frontal lobe neuroplasticity associated with learning a complex bimanual MIS skill using functional near-infrared spectroscopy an indirect neuroimaging technique. Laparoscopic suturing and knot-tying a technically challenging bimanual skill is selected to demonstrate learning related reorganisation of cortical behaviour within the frontal lobe by shifts in activation from the prefrontal cortex (PFC) subserving attention to primary and secondary motor centres (premotor cortex, supplementary motor area and primary motor cortex) in which motor sequences are encoded and executed. In the cross-sectional study, participants of varying expertise demonstrate frontal lobe neuroplasticity commensurate with motor learning. The longitudinal study involves tracking evolution in cortical behaviour of novices in response to receipt of eight hours distributed training over a fortnight. Despite novices achieving expert like performance and stabilisation on the technical task, this study demonstrates that novices displayed persistent PFC activity. This study establishes for complex bimanual tasks, that improvements in technical performance do not accompany a reduced reliance in attention to support performance. Finally, least-squares support vector machine is used to classify expertise based on frontal lobe functional connectivity. Findings of this thesis demonstrate the value of interrogating cortical behaviour towards assessing MIS skills development and credentialing.Open Acces

    Three-dimensional point-cloud room model in room acoustics simulations

    Get PDF

    Global Shipping Container Monitoring Using Machine Learning with Multi-Sensor Hubs and Catadioptric Imaging

    Get PDF
    We describe a framework for global shipping container monitoring using machine learning with multi-sensor hubs and infrared catadioptric imaging. A wireless mesh radio satellite tag architecture provides connectivity anywhere in the world which is a significant improvement to legacy methods. We discuss the design and testing of a low-cost long-wave infrared catadioptric imaging device and multi-sensor hub combination as an intelligent edge computing system that, when equipped with physics-based machine learning algorithms, can interpret the scene inside a shipping container to make efficient use of expensive communications bandwidth. The histogram of oriented gradients and T-channel (HOG+) feature as introduced for human detection on low-resolution infrared catadioptric images is shown to be effective for various mirror shapes designed to give wide volume coverage with controlled distortion. Initial results for through-metal communication with ultrasonic guided waves show promise using the Dynamic Wavelet Fingerprint Technique (DWFT) to identify Lamb waves in a complicated ultrasonic signal

    Similarity measures and diversity rankings for query-focused sentence extraction

    Get PDF
    Query-focused sentence extraction generally refers to an extractive approach to select a set of sentences that responds to a specific information need. It is one of the major approaches employed in multi-document summarization, focused summarization, and complex question answering. The major advantage of most extractive methods over the natural language processing (NLP) intensive methods is that they are relatively simple, theoretically sound – drawing upon several supervised and unsupervised learning techniques, and often produce equally strong empirical performance. Many research areas, including information retrieval and text mining, have recently moved toward the extractive query-focused sentence generation as its outputs have great potential to support every day‟s information seeking activities. Particularly, as more information have been created and stored online, extractive-based summarization systems may quickly utilize several ubiquitous resources, such as Google search results and social medias, to extract summaries to answer users‟ queries.This thesis explores how the performance of sentence extraction tasks can be improved to create higher quality outputs. Specifically, two major areas are investigated. First, we examine the issue of natural language variation which affects the similarity judgment of sentences. As sentences are much shorter than documents, they generally contain fewer occurring words. Moreover, the similarity notions of sentences are different than those of documents as they tend to be very specific in meanings. Thus many document-level similarity measures are likely to perform well at this level. In this work, we address these issues in two application domains. First, we present a hybrid method, utilizing both unsupervised and supervised techniques, to compute the similarity of interrogative sentences for factoid question reuse. Next, we propose a novel structural similarity measure based on sentence semantics for paraphrase identification and textual entailment recognition tasks. The empirical evaluations suggest the effectiveness of the proposed methods in improving the accuracy of sentence similarity judgments.Furthermore, we examine the effects of the proposed similarity measure in two specific sentence extraction tasks, focused summarization and complex question answering. In conjunction with the proposed similarity measure, we also explore the issues of novelty, redundancy, and diversity in sentence extraction. To that end, we present a novel approach to promote diversity of extracted sets of sentences based on the negative endorsement principle. Negative-signed edges are employed to represent a redundancy relation between sentence nodes in graphs. Then, sentences are reranked according to the long-term negative endorsements from random walk. Additionally, we propose a unified centrality ranking and diversity ranking based on the aforementioned principle. The results from a comprehensive evaluation confirm that the proposed methods perform competitively, compared to many state-of-the-art methods.Ph.D., Information Science -- Drexel University, 201
    • …
    corecore