374 research outputs found

    Geometric diagram for representing shape quality in mesh refinement

    Get PDF
    summary:We review and discuss a method to normalize triangles by the longest-edge. A geometric diagram is described as a helpful tool for studying and interpreting the quality of triangle shapes during iterative mesh refinements. Modern CAE systems as those implementing the finite element method (FEM) require such tools for guiding the user about the quality of generated triangulations. In this paper we show that a similar method and corresponding geometric diagram in the three-dimensional case do not exist

    Average Interpolation Under the Maximum Angle Condition

    Full text link
    Interpolation error estimates needed in common finite element applications using simplicial meshes typically impose restrictions on the both the smoothness of the interpolated functions and the shape of the simplices. While the simplest theory can be generalized to admit less smooth functions (e.g., functions in H^1(\Omega) rather than H^2(\Omega)) and more general shapes (e.g., the maximum angle condition rather than the minimum angle condition), existing theory does not allow these extensions to be performed simultaneously. By localizing over a well-shaped auxiliary spatial partition, error estimates are established under minimal function smoothness and mesh regularity. This construction is especially important in two cases: L^p(\Omega) estimates for data in W^{1,p}(\Omega) hold for meshes without any restrictions on simplex shape, and W^{1,p}(\Omega) estimates for data in W^{2,p}(\Omega) hold under a generalization of the maximum angle condition which previously required p>2 for standard Lagrange interpolation

    TetSplat: Real-time Rendering and Volume Clipping of Large Unstructured Tetrahedral Meshes

    Get PDF
    We present a novel approach to interactive visualization and exploration of large unstructured tetrahedral meshes. These massive 3D meshes are used in mission-critical CFD and structural mechanics simulations, and typically sample multiple field values on several millions of unstructured grid points. Our method relies on the pre-processing of the tetrahedral mesh to partition it into non-convex boundaries and internal fragments that are subsequently encoded into compressed multi-resolution data representations. These compact hierarchical data structures are then adaptively rendered and probed in real-time on a commodity PC. Our point-based rendering algorithm, which is inspired by QSplat, employs a simple but highly efficient splatting technique that guarantees interactive frame-rates regardless of the size of the input mesh and the available rendering hardware. It furthermore allows for real-time probing of the volumetric data-set through constructive solid geometry operations as well as interactive editing of color transfer functions for an arbitrary number of field values. Thus, the presented visualization technique allows end-users for the first time to interactively render and explore very large unstructured tetrahedral meshes on relatively inexpensive hardware

    Parallel Anisotropic Unstructured Grid Adaptation

    Get PDF
    Computational Fluid Dynamics (CFD) has become critical to the design and analysis of aerospace vehicles. Parallel grid adaptation that resolves multiple scales with anisotropy is identified as one of the challenges in the CFD Vision 2030 Study to increase the capacity and capability of CFD simulation. The Study also cautions that computer architectures are undergoing a radical change and dramatic increases in algorithm concurrency will be required to exploit full performance. This paper reviews four different methods to parallel anisotropic grid generation. They cover both ends of the spectrum: (i) using existing state-of-the-art software optimized for a single core and modifying it for parallel platforms and (ii) designing and implementing scalable software with incomplete, but rapidly maturating functionality. A brief overview for each grid adaptation system is presented in the context of a telescopic approach for multilevel concurrency. These methods employ different approaches to enable parallel execution, which provides a unique opportunity to illustrate the relative behavior of each approach. Qualitative and quantitative metric evaluations are used to draw lessons for future developments in this critical area for parallel CFD simulation

    Hamiltonian triangular refinements and space-filling curves

    Get PDF
    We have introduced here the concept of Hamiltonian triangular refinement. For any Hamiltonian triangulation it is shown that there is a refinement which is also a Hamiltonian triangulation and the corresponding Hamiltonian path preserves the nesting condition of the corresponding space-filling curve. We have proved that the number of such Hamiltonian triangular refinements is bounded from below and from above. The relation between Hamiltonian triangular refinements and space-filling curves is also explored and explained
    corecore