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a b s t r a c t

We have introduced here the concept of Hamiltonian triangular refinement. For any 
Hamiltonian triangulation it is shown that there is a refinement which is also a Hamiltonian 
triangulation and the corresponding Hamiltonian path preserves the nesting condition of 
the corresponding space-filling curve. We have proved that the number of such Hamilto-
nian triangular refinements is bounded from below and from above. The relation between 
Hamiltonian triangular refinements and space-filling curves is also explored and explained. 

1. Introduction

Numerical mesh generation and refinement of a given mesh are the main steps in many areas such as Computational
Geometry, Computer Graphics, Geometric Modeling or the Finite Element Method (FEM). On the other hand, there is a
significant interest for using space-filling curves (SFC) in scientific and engineering applications. A space-filling curve is
a continuous mapping from the one-dimensional space onto the multiple-dimensional space.

Hilbert recognized a general geometrical generating procedure that allowed the construction of an entire class of space-
filling curves [1]. Hilbert promulgated the following heuristic principle: If the interval I = [0, 1] can bemapped continuously
onto the squareQ = [0, 1]2, then after partitioningI into four congruent subintervals andQ into four congruent sub-squares,
each subinterval can bemapped continuously onto one of the sub-squares. Next, each subinterval is, in turn, partitioned into
four congruent subintervals and each sub-square into congruent sub-squares, and the argument is repeated. If this is carried
on ad infinitum, I and Q are partitioned into 22n congruent replicas for n = 1, 2, 3 . . .

Hilbert demonstrated that the sub-squares can be arranged so that adjacent subintervals correspond to adjacent sub-
squares with an edge in common, and so that the inclusion relationships are preserved, i.e., if a square corresponds to an
interval, then its sub-squares correspond to the subintervals of that interval (nesting condition) [2]. See Fig. 1. Both the
Hilbert curve and its discrete approximations are useful because they give a mapping between 1D and 2D space that fairly
well preserves locality [3]. If (x, y) are the coordinates of a point within the unit square, and d is the distance along the curve
when it reaches that point, then points that have nearby d values will also have nearby (x, y) values. The converse cannot
always be true. There will sometimes be points where the (x, y) coordinates are close but their d values are far apart.
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Fig. 1. First steps in the generation of Hilbert’s Curve.

Fig. 2. (Left) Non-Hamiltonian triangulation and (right) its dual graph.

Of special interest is the connection of SFC’s tomesh generation. Obviously, if amesh can be described by a path traversing
all the triangles (or quadrilaterals in the case of quadrangulations) only once, then that given mesh can be stored and
processed in a very efficient way. This is the idea behind Hamiltonian triangulations.

A Hamiltonian path is a path in an undirected or directed graph that visits each vertex exactly once. A triangulation is
called aHamiltonian triangulation if its dual graph deleting the vertex corresponding to the outer face (the inner dual) admits
a Hamiltonian path. In other words, there is a path that visits each vertex exactly once in the dual graph of the triangulation,
that is the path visits each triangle exactly once. In other case, a triangulation is called non-Hamiltonian. A simple example
of non-Hamiltonian triangulation is given in Fig. 2.

Hamiltonian properties of triangulations have been studied extensively, see for example [4–6]. Space-filling curves are
in the background of some of the latest proposed data structures [7] in the area of digital terrain representations [8,9] and
image compression [10].

Even in the field of mesh refinement and associated data structures SFC’s have shown their applicability [11,12].
We introduce here the concept of Hamiltonian triangular refinement. For any Hamiltonian triangulation it is shown

that there is a refinement which results in a Hamiltonian triangulation and also preserves the nesting condition of the
corresponding Hamiltonian path. The number of such Hamiltonian triangular refinements is bounded from below and
from above. We prove the number of Hamiltonian refinements (that depends on the number of triangles and on Fibonacci
numbers) yielding Hamiltonian triangulation.

It should be noted that our scenario does not uniquely apply to initial triangulations containing a unique Hamiltonian
path. We may consider an initial triangulation where more than one Hamiltonian path are included. In this case, the
Hamiltonian refinementwhen applied to such triangulation preserves the samenumber of Hamiltonian paths as in the initial
triangulation. If the existence of a single Hamiltonian path is relevant to the problem of interest, for example in geometric
compression and transmission, then there is a solution proposed in [4] where a given triangulatedmodel can be represented
as a single triangle strip (Hamiltonian path).

Fig. 3(a) shows a simple Hamiltonian triangulation and its refinement which is also Hamiltonian, Fig. 3(b).

2. Refinement of a triangulation and triangle partition

Mesh refinement is often divided into two types: uniform and local. Uniform implies the refinement of all triangles in a
mesh, usually following a specified local subdivision pattern. If the refinement is made locally for only a single triangle or a
sub-group of triangles, then the refinement is local. Local refinement of triangular meshes involves twomain tasks. The first
is the local partition of the target triangles and the second is the propagation to successive neighbor triangles to preserve
mesh conformity. Several approaches for partitioning triangles have been studied.



Fig. 3. (a) Hamiltonian triangulation and (b) Hamiltonian refinement.

Fig. 4. k-partition of a triangle, interior triangle (in yellow) and ears (in gray). Two corner-edge diagonals are colored in red in (c). (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)

A triangulation of a finite planar point set S is a dissection of its convex hull by non-crossing diagonals into triangles. In
the 2D plane triangulations are made up of triangles, together with their edges and vertices. A triangulation is conforming
if any adjacent triangle share an entire edge or a common vertex, i.e. there are no hanging nodes. Here we will consider
only conforming triangulations where the vertices of all the triangles are non collinear points. Conforming triangulations
are usually employed in the Finite Element context [13,14].

Definition 1 (k-Partition of a Triangle). For a triangle t with verticesABC let Sk be the set of pointsA, B, C and k equality spaced
points in each edge of triangle t . That is, Sk = {A, B, C, A1, . . . , Ak, B1, . . . , Bk, C1, . . . , Ck}, where Ai, Bi, Ci are k equally spaced
points respectively in edges a, b and c. A k-partition of t is any triangulation of Sk.

Notice that in order to avoid trivial situations, wewill consider k ≥ 1, since for k = 0 it is obtained the trivial triangulation
consisting only in the initial triangle. Then in any k-partition of a triangle with vertices ABC each edge of the triangle is
subdivided into the same number of parts k + 1, see Fig. 4(a). Let T be a k-partition of triangle ABC . A corner-edge diagonal
is a diagonal of T one of whose endpoints is a corner of ABC and the other is an interior point of the opposite edge [15]. Two
corner-edge diagonals are in the triangulation in Fig. 4(c), colored in red. On the other hand, the triangulation in Fig. 4(b)
does not contain any corner-edge diagonal. Let us consider a vertex of the triangle, say A. Then either there is at least an
interior corner-edge diagonal at A or there is not such interior diagonal. Notice that, according to the definition, there might
bemultiple corner-edge diagonals. Since we consider only conforming triangulation, if there are more than one corner-edge
diagonal, all of them share a corner of the initial triangle with vertices ABC .

If in vertex A there is not an interior diagonal, then there is a triangle in the k-partition of triangle ABC with vertex A, two
edges in edges b, c of triangle ABC sharing A and the third edge interior to triangle ABC . This triangle of the k-partition is
called an ear. For example, the triangulation in Fig. 4(b) has ears in all three vertices, while the triangulation in Fig. 4(c) has
two ears. All the ears are marked in gray color.

An interior triangle is a triangle of T whose vertices are interior points of different edges of ABC . Notice that if there is an
interior triangle in a triangulation, by removing that triangle, there will appear three non-connected subtriangulations. In
other words, an interior triangle has valence 3 in the dual graph. Therefore, if a triangulation of a single triangle ABC has an
interior triangle, the triangulation is not Hamiltonian. For example, the triangulation in Fig. 4(b) contains a central triangle
(in yellow in the figure), while the triangulation in Fig. 4(c) has not a central triangle. A regular triangle is a triangle which is
neither an ear nor an interior triangle. Notice that a regular triangle has valence 2 in the dual graph.

More precisely let T be a k-triangulation of ABC . Then either T has one central triangle, three ears, and no corner-
edge diagonal, or T has no central triangle, two ears, and at least one corner-edge diagonal emanating from the remaining
corner. Triangulations of the former kind will be called non-Hamiltonian or nHk-triangulations (see Fig. 5(a) for an example),
and triangulations of the latter kind will be called Hamiltonian or Hk-triangulations (see Fig. 5(b) for an example). We are
interested here on the number of Hk-triangulations. Obviously, since the partition of the triangle has to be a Hamiltonian



Fig. 5. Dual graphs for triangulations in Fig. 4.

Fig. 6. Two Hk-triangulations and the associated 01 codes.

triangulation, then its dual graph is a path and it will present exactly two ear triangles at one of the edges of the parent
triangle.

Proposition 2. In a triangle, there are
( 3k

k

)
Hk-triangulations.

Proof. This proposition is a particular case of [15, Theorem8]. Herewe use an encoding of triangulations by {0, 1}-sequences
similar to that from [15,16].

The definition and construction algorithmof sequence {0, 1} follows: Let T be anHk-triangulation, of trianglewith vertices
ABC . As far as any Hk-triangulation, say T , has two ears, these two ears define an edge in the parent triangle. Let CB be the
edge in the parent triangle t defined by the two ears as in Fig. 6. Each regular triangle of T shares exactly one edge with one
of the edges of ABC . We encode the regular triangles that share an edge with CB by 0, and those that share an edge with the
other two edges, AC or AB, by 1. Consider the directed segment CB, and shift it slightly (‘‘infinitesimally’’) into the interior of
triangle ABC . The segment obtained in that way intersects all the triangles of T and consequently induces a linear order on
them. The {0, 1}-sequence associated to triangulation T is just the sequence of 0’s and 1’s corresponding to the triangles as
traversed by that shifted segment.

Using the linear order thatwas described above,we obtain a {0, 1}-sequence of length 3k−1, inwhich 0 occurs k−1 times
and 1 occurs 2k times. See Fig. 6 for an illustration of two Hk-triangulations and their {0, 1}-sequences. It is easy to see that
this correspondence between Hk-triangulations of Sk and {0, 1}-sequences with k − 1 occurrences of 0 and 2k occurrences
of 1 is bijective.

Since there are 3 possibilities for the vertex with no ear, the total number of Hk-triangulations of triangle t is

3
(
3k − 1
k − 1

)
= 3 ·

(3k − 1)!
(k − 1)!(2k)!

=
3k(3k − 1)!
k(k − 1)!(2k)!

=

(
3k
k

)
. □

3. Hamiltonian refinement of a Hamiltonian triangulation

In this sectionwewill focus on Hamiltonian triangulations, that is triangulations admitting at least one Hamiltonian path,
and we will prove that any of them admits refinements that are also Hamiltonian.

Definition 3 (Nesting Condition). Let τ be a given triangulation with Hamiltonian path H . Let τ ′ be a triangular refinement of
τ , so each triangle tj ∈ τ is subdivided in nj subtriangles. A Hamiltonian pathH ′ of τ ′ holds de nesting condition with respect



Fig. 7. (a) Hamiltonian triangulation with its Hamiltonian path, (b) Hamiltonian refinement of the original path, and (c) Hamiltonian path of a refinement
without the nesting condition.

to H if: If subinterval Ij corresponds to subtriangle tj ∈ τ by H , then there are nj subintervals of Ij that correspond to the nj
subtriangles of tj by H ′.

Definition 4 (k-Mapping for a Given Hamiltonian Triangulation τ ). Let k be a positive integer, and τ a given triangulation. Let
C be the set of Hk-triangulations, a mapping f : τ −→ C is called a k-mapping for τ .

Notice that f maps the set of triangles to the set of Hk-triangulations.

Definition 5 (f -Refinement of a Triangulation τ ). Let τ be a triangulation, and let f be a k-mapping for τ . f (τ ) is a refinement
of τ such that the refinement of each triangle T ∈ τ is the Hk-triangulation determined by f and is called a f -refinement of
τ .

Remark 6. For any triangle T ∈ τ there are three k-partitions of T determined by f (T ) since there are 3 edges where the
ears can be put. Then, if n is the number of triangles of τ , there are 3n f -refinements of τ .

Definition 7 (Hamiltonian f -Refinement of a Hamiltonian Path). Let τ be a Hamiltonian triangulation with Hamiltonian path
Hτ , and let f be a k-mapping for τ . A f -refinement τ ′ of τ is called a Hamiltonian refinement of Hτ if it satisfies the following
three conditions:

(1) The refinement of each triangle T ∈ τ is the k-partition determined by f .
(2) τ ′ admits a Hamiltonian path Hτ ′ .
(3) Hτ ′ holds the nesting condition with respect to Hτ .

Fig. 7 shows a simple Hamiltonian triangulation and two refinements. The first one, see Fig. 7(b), is a Hamiltonian
refinement while the second one, Fig. 7(c) is not because there is no a Hamiltonian path holding the nesting property with
respect to the initial triangulation and Hamiltonian path in Fig. 7(a).

Theorem 8 (Number of Hamiltonian f -Refinements). Let τ be a Hamiltonian triangulation with n ≥ 3 triangles and with
Hamiltonian path Hτ , let f be a k-mapping for triangulation τ . Then, Hτ always admits a Hamiltonian refinement. Even more,
if cτ represents the number of Hamiltonian f -refinements of Hτ , then 2(3 + n) ≤ cτ ≤ 4Fn+1, where Fn represents the nth
Fibonacci number.1

Proof. Observe that in any Hamiltonian refinement when the Hamiltonian path crosses through a triangle, there are three
possible positions of the k-partition (the two ears of the k-partition define one of the edges, so we have one position for each
edge). We can identify each valid partition in a triangle ABC of τ by the two vertices where the ears are located.

Now, we are going to define a digraph Dτ associated to Hτ in such a way that each Hamiltonian refinement Rτ is going to
be represented by a maximal directed path in that digraph.

1 The Fibonacci numbers are defined by F0 = 0, F1 = 1 and the recurrence relation Fn = Fn−1 + Fn−2 for n ≥ 2.



Fig. 8. (Left) A Hamiltonian triangulation and its Hamiltonian path. (Right) The digraph associated.

Fig. 9. (Left) Two arrows from level k to level k+ 1 arrive to the vertex with outdegree 2. (Right) Two arrows from level k to level k+ 1 arrive to the vertex
with outdegree 1.

Fig. 10. The triangulation giving the lower bound of Theorem 8 and its associated digraph.

The number of vertices in Dτ is three times the number of triangles in τ , so we can represent those vertices sorted in
layers of three vertices (one for each triangle of the path Hτ ) each one corresponding to the three vertices of each triangle.
For the sake of clarity, vertex A in level k will be represented by Ak (and that means that A is a vertex in the kth triangle in
the path Hτ ). The edges run from layer k to layer k + 1. We start representing the edges from level 1 to level 2, we add an
edge from a vertex A1 to a vertex B2 if A ̸= B and B is a vertex in the first triangle and in the second triangle of Hτ . Thus, we
have four edges from level 1 to level 2. In general, we add one edge from vertex Ak in level k to vertex Bk+1 in level k + 1
if there exists an edge in the previous level finishing at Ak, and B is a vertex shared by the kth triangle and the (k + 1)-st
triangle other than A. Thus, in each layer one of the vertices has outdegree 1, other one has outdegree 2, and the last one is
isolated. The number of Hamiltonian refinements of τ can be identified, in this way, with twice the number of directed paths
from the first to the last level of Dτ . Note that we must double the number of paths since from any of the two non-isolated
vertices of the last level we can draw two outgoing edges. Fig. 8 shows a Hamiltonian triangulation, its Hamiltonian path
and the digraph associated.

From layer k to layer k + 1 there are two possible schemes depicted in Fig. 9. If we denote by xk the number of paths
arriving to the vertex with outdegree 1 in the level k and by yk the number of paths arriving to the vertex with outdegree 2,
it is clear that the first scheme leads to: xk+1 = yk and yk+1 = xk + yk, and the second scheme leads to xk+1 = xk + yk and
yk+1 = yk, and we can consider x1 = 2 and y1 = 2. So, we can determine the number of refinements via a simple matrix
multiplication.

Finally, in the last triangle, we can consider two edges going out from each one of the two vertices with indegree greater
than zero.

Then, the two extreme cases are that we have only the first scheme and we obtain the lower bound (see Fig. 10) that
appears in the statement of the theorem, and if we have only the second scheme,we obtain the upper bound (see Fig. 11). □



Fig. 11. The triangulation giving the upper bound of Theorem 8 and its associated digraph.

Fig. 12. (Left) The distance from A toD is smaller than three quarters of the distance from A to B, (right) the distance from A to successive pointsD converges
to the height of the triangle.

4. Space-filling curves from Hamiltonian triangulations

If we start in a Hamiltonian triangulation and we refine it an infinite number of times, it is not clear that we always
obtain a SFC from the limit of the sequence of the Hamiltonian paths. In this way, Fig. 12 right illustrates a different situation
where the distance from A to successive points D converges to the height of the triangle. Of course, this is not a Hamiltonian
refinement as we have defined in this paper. In order to prove that if we use Hamiltonian refinements, we obtain always a
SFC, we give the following definition.

Definition 9 (Pivot Vertex). In a Hk-triangulation of a triangle, we call pivot vertex to the vertex of the original triangle that
is not an ear in the Hk-triangulation.

Theorem 10. Given a sequence of Hamiltonian refinements τn, the limit of the Hamiltonian paths of τn is a SFC.

Proof. If we define the diameter of a triangle as the longest distance between two points of the triangle, i.e., the longest edge,
then the result is equivalent to proving that the diameters of the triangles obtained in the refinements tend to zero [17]. For
example if k = 1, it is clear that the distance between non-pivot vertices is halved in each iteration, so we only need to
check that the distances from pivot vertices decrease in such a way that we can guarantee the result. After one iteration
the maximum distance from a pivot vertex could be the distance from that vertex to the middle point of the opposite edge,
then we consider another iteration with the same point as a pivot vertex, by using elementary geometric arguments, the
maximum distance nowwill be less than three quarters of the maximum distance in the original triangle. Fig. 12 left, shows
an example where the distance from A to D is smaller than three quarters of the distance from A to B. Then, by iterating
the argument, if dn is the diameter after n refinements, we have dn ≤ |AB|

( 3
4

)n
−→ 0. Fig. 12 right illustrates a different

situation where the distance from A to successive points D converges to the height of the triangle. □



5. Conclusions and open problem

It has been proved that for any given Hamiltonian triangulation there is a refinement which is also a Hamiltonian
triangulation and besides preserves the nesting condition of the corresponding SFC’s. Also the number of such Hamiltonian
refinements has been bounded both from below and from above.

An interesting open problem is to tackle the tridimensional question, this is, for any Hamiltonian 3D triangulation is there
a refinement which is also a Hamiltonian 3D triangulation? In 3D we can treat different Hamiltonian paths, for example the
paths that enter and leave through a face, edge or vertex. An interesting result in [6] shows the existence of a through-vertex
Hamiltonian path between any two tetrahedra, under certain conditions. However whether the same result is achieved or
not for element-based paths and under a iterative refinement is still an open problem.
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