4,912 research outputs found

    ADER-WENO Finite Volume Schemes with Space-Time Adaptive Mesh Refinement

    Full text link
    We present the first high order one-step ADER-WENO finite volume scheme with Adaptive Mesh Refinement (AMR) in multiple space dimensions. High order spatial accuracy is obtained through a WENO reconstruction, while a high order one-step time discretization is achieved using a local space-time discontinuous Galerkin predictor method. Due to the one-step nature of the underlying scheme, the resulting algorithm is particularly well suited for an AMR strategy on space-time adaptive meshes, i.e.with time-accurate local time stepping. The AMR property has been implemented 'cell-by-cell', with a standard tree-type algorithm, while the scheme has been parallelized via the Message Passing Interface (MPI) paradigm. The new scheme has been tested over a wide range of examples for nonlinear systems of hyperbolic conservation laws, including the classical Euler equations of compressible gas dynamics and the equations of magnetohydrodynamics (MHD). High order in space and time have been confirmed via a numerical convergence study and a detailed analysis of the computational speed-up with respect to highly refined uniform meshes is also presented. We also show test problems where the presented high order AMR scheme behaves clearly better than traditional second order AMR methods. The proposed scheme that combines for the first time high order ADER methods with space--time adaptive grids in two and three space dimensions is likely to become a useful tool in several fields of computational physics, applied mathematics and mechanics.Comment: With updated bibliography informatio

    Investigation of a drag reduction on a circular cylinder in rotary oscillation

    Get PDF
    Drag reduction in two-dimensional flow over a circular cylinder, achieved using rotary oscillation, was investigated with computational simulations. In the experiments of Tokumaru & Dimotakis (1991), this mechanism was observed to yield up to 80% drag reduction at Re = 15 000 for certain ranges of frequency and amplitude of sinusoidal rotary oscillation. Simulations with a high-resolution viscous vortex method were carried out over a range of Reynolds numbers (150–15 000) to explore the effects of oscillatory rotational forcing. Significant drag reduction was observed for a rotational forcing which had been very effective in the experiments. The impact of the forcing is strongly Reynolds number dependent. The cylinder oscillation appears to trigger a distinctive shedding pattern which is related to the Reynolds number dependence of the drag reduction. It appears that the source of this unusual shedding pattern and associated drag reduction is vortex dynamics in the boundary layer initiated by the oscillatory cylinder rotation. The practical efficiency of the drag reduction procedure is also discussed

    Turbulence-resolving simulations of wind turbine wakes

    Full text link
    Turbulence-resolving simulations of wind turbine wakes are presented using a high--order flow solver combined with both a standard and a novel dynamic implicit spectral vanishing viscosity (iSVV and dynamic iSVV) model to account for subgrid-scale (SGS) stresses. The numerical solutions are compared against wind tunnel measurements, which include mean velocity and turbulent intensity profiles, as well as integral rotor quantities such as power and thrust coefficients. For the standard (also termed static) case the magnitude of the spectral vanishing viscosity is selected via a heuristic analysis of the wake statistics, while in the case of the dynamic model the magnitude is adjusted both in space and time at each time step. The study focuses on examining the ability of the two approaches, standard (static) and dynamic, to accurately capture the wake features, both qualitatively and quantitatively. The results suggest that the static method can become over-dissipative when the magnitude of the spectral viscosity is increased, while the dynamic approach which adjusts the magnitude of dissipation locally is shown to be more appropriate for a non-homogeneous flow such that of a wind turbine wake

    Local simulations of the magnetized Kelvin-Helmholtz instability in neutron-star mergers

    Get PDF
    Context. Global MHD simulations show Kelvin-Helmholtz (KH) instabilities at the contact surface of two merging neutron stars. That region has been identified as the site of efficient amplification of magnetic fields. However, these global simulations, due to numerical limitations, were unable to determine the saturation level of the field strength, and thus the possible back-reaction of the magnetic field onto the flow. Aims. We investigate the amplification of initially weak fields in KH unstable shear flows, and the back-reaction of the field onto the flow. Methods. We use a high-resolution ideal MHD code to perform 2D and 3D local simulations of shear flows. Results. In 2D, the magnetic field is amplified in less than 0.01ms until it reaches locally equipartition with the kinetic energy. Subsequently, it saturates due to resistive instabilities that disrupt the KH vortex and decelerate the shear flow on a secular time scale. We determine scaling laws of the field amplification with the initial field strength and the grid resolution. In 3D, this hydromagnetic mechanism may be dominated by purely hydrodynamic instabilities limiting the amplification. We find maximum magnetic fields of 10^16 G locally, and r.m.s. maxima within the box of 10^15 G. However, such strong fields exist only for a short period. In the saturated state, the magnetic field is mainly oriented parallel to the shear flow for strong initial fields, while weaker initial fields tend to lead to a more balanced distribution of the field energy. In all models the flow shows small-scale features. The magnetic field is at most in equipartition with the decaying shear flow. (abridged)Comment: 26 pages, 22 figures (figure quality reduced); accepted for publication in Astronomy & Astrophysic
    • …
    corecore