198 research outputs found

    Dynamical properties of electrical circuits with fully nonlinear memristors

    Get PDF
    The recent design of a nanoscale device with a memristive characteristic has had a great impact in nonlinear circuit theory. Such a device, whose existence was predicted by Leon Chua in 1971, is governed by a charge-dependent voltage-current relation of the form v=M(q)iv=M(q)i. In this paper we show that allowing for a fully nonlinear characteristic v=η(q,i)v=\eta(q, i) in memristive devices provides a general framework for modeling and analyzing a very broad family of electrical and electronic circuits; Chua's memristors are particular instances in which η(q,i)\eta(q,i) is linear in ii. We examine several dynamical features of circuits with fully nonlinear memristors, accommodating not only charge-controlled but also flux-controlled ones, with a characteristic of the form i=ζ(φ,v)i=\zeta(\varphi, v). Our results apply in particular to Chua's memristive circuits; certain properties of these can be seen as a consequence of the special form of the elastance and reluctance matrices displayed by Chua's memristors.Comment: 19 page

    First order devices, hybrid memristors, and the frontiers of nonlinear circuit theory

    Get PDF
    Several devices exhibiting memory effects have shown up in nonlinear circuit theory in recent years. Among others, these circuit elements include Chua's memristors, as well as memcapacitors and meminductors. These and other related devices seem to be beyond the, say, classical scope of circuit theory, which is formulated in terms of resistors, capacitors, inductors, and voltage and current sources. We explore in this paper the potential extent of nonlinear circuit theory by classifying such mem-devices in terms of the variables involved in their constitutive relations and the notions of the differential- and the state-order of a device. Within this framework, the frontier of first order circuit theory is defined by so-called hybrid memristors, which are proposed here to accommodate a characteristic relating all four fundamental circuit variables. Devices with differential order two and mem-systems are discussed in less detail. We allow for fully nonlinear characteristics in all circuit elements, arriving at a rather exhaustive taxonomy of C^1-devices. Additionally, we extend the notion of a topologically degenerate configuration to circuits with memcapacitors, meminductors and all types of memristors, and characterize the differential-algebraic index of nodal models of such circuits.Comment: Published in 2013. Journal reference included as a footnote in the first pag

    Memristors for the Curious Outsiders

    Full text link
    We present both an overview and a perspective of recent experimental advances and proposed new approaches to performing computation using memristors. A memristor is a 2-terminal passive component with a dynamic resistance depending on an internal parameter. We provide an brief historical introduction, as well as an overview over the physical mechanism that lead to memristive behavior. This review is meant to guide nonpractitioners in the field of memristive circuits and their connection to machine learning and neural computation.Comment: Perpective paper for MDPI Technologies; 43 page
    • …
    corecore