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Abstract

The recent design of a nanoscale device with a memristive characteristic has had a

great impact in nonlinear circuit theory. Such a device, whose existence was predicted

by Leon Chua in 1971, is governed by a charge-dependent voltage-current relation of

the form v = M(q)i. In this paper we show that allowing for a fully nonlinear charac-

teristic v = η(q, i) in memristive devices provides a general framework for modeling and

analyzing a very broad family of electrical and electronic circuits; Chua’s memristors

are particular instances in which η(q, i) is linear in i. We examine several dynamical

features of circuits with fully nonlinear memristors, accommodating not only charge-

controlled but also flux-controlled ones, with a characteristic of the form i = ζ(ϕ, v).

Our results apply in particular to Chua’s memristive circuits; certain properties of

these can be seen as a consequence of the special form of the elastance and reluctance

matrices displayed by Chua’s memristors.
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1 Introduction

In 1971 Leon Chua predicted the existence of a fourth basic circuit element which would be

governed by a flux-charge relation, having either a charge-controlled form ϕ = φ(q) or a flux-

controlled one q = σ(ϕ) [10]. This characteristic was somehow lacking in electrical circuit

theory, since resistors, capacitors and inductors are defined by voltage-current, charge-voltage

and flux-current relations, respectively. The design of such a memory-resistor or memristor

at the nanometer scale announced by an HP team in 2008 [37] has driven a lot of attention

to these devices. Many applications are being developed (cf. [9, 21, 36, 38, 40] and references

therein). Memristive devices pose challenging problems at the device and circuit modeling

levels [4, 28, 33, 39] but also from a dynamical perspective [20, 25, 26, 27, 31].

The memristor reported in [37] is governed by a relation of the form

v = M(q)i, (1)

being framed in the charge-control setting postulated by Chua in his seminal paper [10];

indeed, assuming φ to be C1, taking time derivatives in the equation ϕ = φ(q) and using the

relations ϕ′ = v, q′ = i, we are led to (1) with M(q) = φ′(q). Chua and Kang considered in

[11] the more general characteristic

v = M(q, i)i. (2)

Both (1) and (2), but also the maps governing other devices such as capacitors or resistors,

are particular instances of the fully nonlinear relation

v = η(q, i) (3)

to be discussed in this paper. The general characteristic (3) will give a deeper insight into

the mathematical properties that underly several dynamical features of memristive circuits.

In particular, memristors increase the dynamical degree of freedom regardless of their ac-

tual location in the circuit, contrary to capacitors or inductors which in certain (so-called

topologically degenerate) configurations do not increase the state dimension; additionally,

memristors have been observed to introduce null eigenvalues in the linearization of differ-

ent circuits [25, 31]. This kind of problems can be nicely addressed in the framework here

introduced.

This will be possible because of the fact that (3), together with its dual relation

i = ζ(ϕ, v) (4)

and their time-varying counterparts, allow for a surprisingly simple, albeit general, model

for the dynamics of nonlinear circuits including resistors, memristors, capacitors, inductors,
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and voltage and current sources. Indeed, such a model can be written as

q′ = iq (5a)

ϕ′ = vϕ (5b)

vq = f(q, iq, t) (5c)

iϕ = g(ϕ, vϕ, t) (5d)

0 = Bqvq + Bϕvϕ (5e)

0 = Dqiq +Dϕiϕ, (5f)

where B = (Bq Bϕ) and D = (Dq Dϕ) stand for the reduced loop and cutset matrices of the

circuit (cf. subsection 3.1). The circuit elements (and hence B and D) are divided into so-

called q- and ϕ-devices, as detailed in Section 2. The key aspect supporting the model (5) is

that e.g. (5d) accommodates a great variety of devices, including flux-controlled memristors,

linear inductors, Josephson junctions, pn and tunnel diodes, independent current sources,

voltage-controlled current sources, etc.; similar remarks apply to (5c).

The goal of our research is two-fold: first, from a modeling point of view, we want not only

to accommodate in circuit theory general devices governed by (3) or (4), but also emphasize

the fact that these characteristics allow for a very general description of the circuit dynamics,

providing in turn a framework for the analysis of different nonlinear phenomena; from an

analytical standpoint, we wish to tackle several dynamical properties of circuits with fully

nonlinear memristors. The structure of the paper reflects the two main aspects that drive

this research: we address modeling issues in Section 2, and dynamical properties in Section

3. Section 4 compiles some concluding remarks.

2 Device models

2.1 q-devices

Definition 1. A q-device is a circuit element which admits a C1 description of the form

v = η(q, i, t). (6)

The terminology comes from the fact that q-devices may be controlled by the charge q (this

will be the case for capacitors), its time derivative q′ = i (for current-controlled resistors)

or both (for q-memristors). Voltage sources will be included in this group for the sake of

completeness.

The relation (6) is a time-varying generalization of (3). Depending on the actual form of

the map η in (6), q-devices particularize to the ones listed in Table 1. It is worth noting that

η need not be a scalar map; this accommodates coupling effects within the different types

of q-devices. Keep also in mind that e.g. ∂η/∂q 6≡ 0 (resp. ≡ 0) means that this derivative
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does not vanish (resp. does vanish) identically; in the first case, it may find a zero at certain

points, though; for instance, it vanishes at i = 0 in Chua’s memristor, for which v = M(q)i.

1. A q-memristor is a q-device for which

∂η

∂q
6≡ 0,

∂η

∂i
6≡ 0.

The map governing the set of q-memristors will be denoted by vm = η1(qm, im, t).

2. A capacitor is a q-device for which

∂η

∂q
6≡ 0,

∂η

∂i
≡ 0.

The relation governing the set of capacitors will be denoted by vc = η2(qc, t).

3. A current-controlled resistor is a q-device for which

∂η

∂q
≡ 0,

∂η

∂i
6≡ 0.

The map governing the set of current-controlled resistors will be written as vr = η3(ir, t).

4. An independent voltage source is a q-device for which

∂η

∂q
≡ 0,

∂η

∂i
≡ 0.

The relation governing independent voltage sources will be denoted by vu = η4(t).

Table 1: q-devices.

In a time-invariant setting, if η is linear in i then we get Chua’s memristor, for which

v = M(q)i. For this reason we use the expression “fully nonlinear” to label memristors with

the general form v = η(q, i). This should cause no misunderstanding with the nonlinear

nature of the original flux-charge relation ϕ = φ(q) in Chua’s setting. Note also that these

memristors are referred to in the literature either as charge-controlled memristors or as

current-controlled memristors; with the expression “q-memristor” we want to emphasize

that the charge q is the dynamic variable actually involved in the description of the device,

as it will happen with the flux ϕ in ϕ-memristors.
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2.2 ϕ-devices

Definition 2. A ϕ-device is a circuit element which admits a C1 description of the form

i = ζ(ϕ, v, t). (7)

The different types of ϕ-devices are enumerated in Table 2.

1. A ϕ-memristor is a ϕ-device for which

∂ζ

∂ϕ
6≡ 0,

∂ζ

∂v
6≡ 0.

The map governing the set of ϕ-memristors will be denoted by iw = ζ1(ϕw, vw, t).

2. An inductor is a ϕ-device for which

∂ζ

∂ϕ
6≡ 0,

∂ζ

∂v
≡ 0.

The relation governing the set of inductors will be denoted by il = ζ2(ϕl, t).

3. A voltage-controlled resistor is a ϕ-device for which

∂ζ

∂ϕ
≡ 0,

∂ζ

∂v
6≡ 0.

The map governing the set of voltage-controlled resistors will be written as ig = ζ3(vg, t).

4. An independent current source is a ϕ-device for which

∂ζ

∂ϕ
≡ 0,

∂ζ

∂v
≡ 0.

The relation governing independent current sources will be denoted by ij = ζ4(t).

Table 2: ϕ-devices.

Again, Chua’s flux-controlled memristor [10], for which i = W (ϕ)v, is obtained in par-

ticular when ζ is time-independent and linear in v.

We do not impose any condition on the time derivatives, either for q- or ϕ-devices. If they

vanish in memristors, resistors, capacitors and inductors we would be led to a time-invariant

setting, with ηk, ζk (k = 1, 2, 3) being independent of t. For sources this assumption would

model DC ones. It is also worth remarking that current-controlled voltage sources (CCVS’s)
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could be easily included in the above taxonomy as q-devices and, similarly, voltage-controlled

current sources (VCCS’s) can be modeled as ϕ-devices.

2.3 Characteristic matrices and passivity

The matrices of partial derivatives of the maps introduced above define the so-called char-

acteristic matrices of the different devices.

Definition 3. The incremental memristance, elastance and resistance matrices of q-memristors,

capacitors and current-controlled resistors, respectively, are defined as

M(qm, im, t) =
∂η1(qm, im, t)

∂im
, Ec(qc, t) =

∂η2(qc, t)

∂qc
, R(ir, t) =

∂η3(ir, t)

∂ir
.

Additionally, the incremental elastance of q-memristors is

Em(qm, im, t) =
∂η1(qm, im, t)

∂qm
.

In Chua’s memristor, for which v = M(q)i, the incremental memristance depends only

on the charge q. The fact that q(t) =
∫ t

−∞
im(τ)dτ makes this element behave as a resistor

in which the resistance depends on the device history; the “memory-resistor” name stems

from this.

If the elastance of capacitors is non-singular at a given operating point, then because

of the implicit function theorem these devices admit (at least locally) a voltage-controlled

description

qc = γ(vc, t).

The incremental capacitance matrix is then defined as

C(vc, t) =
∂γ(vc, t)

∂vc
= (Ec(γ(vc, t), t))

−1.

Note that when a given set of devices (memristors, capacitors or resistors) does not exhibit

coupling effects, the corresponding characteristic matrix is a diagonal one, with diagonal

entries defined by the memristances, elastances or resistances of the individual devices.

The characteristic matrices of ϕ-devices are defined analogously, as detailed below.

Definition 4. The incremental memductance, reluctance and conductance matrices of ϕ-

memristors, inductors and voltage-controlled resistors, respectively, are defined as

W (ϕw, vw, t) =
∂ζ1(ϕw, vw, t)

∂vw
, Rl(ϕl, t) =

∂ζ2(ϕl, t)

∂ϕl

, G(vg, t) =
∂ζ3(vg, t)

∂vg
.

The incremental reluctance of ϕ-memristors is

Rw(ϕw, vw, t) =
∂ζ1(ϕw, vw, t)

∂ϕw

.
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As for capacitors, if the reluctance of inductors is non-singular, then via the implicit

function theorem these devices can be shown to admit a local current-controlled description

ϕl = ξ(il, t),

and the incremental inductance matrix is defined as

L(il, t) =
∂ξ(il, t)

∂il
= (Rl(ξ(il, t), t))

−1.

In order to define the local notions of passivity and strict passivity, we make use of the

concept of a positive (semi)definite matrix; a square matrix P is positive semidefinite (resp.

definite) if uTPu ≥ 0 (resp. > 0) for every non-vanishing vector u. We do not assume P to

be symmetric.

Definition 5. We call the q-memristors, capacitors, current-controlled resistors, ϕ-memris-

tors, inductors or voltage-controlled resistors locally passive (resp. strictly locally passive) at

a given point if the incremental memristance, elastance, resistance, memductance, inductance

or conductance matrix is positive semidefinite (resp. definite) at that point.

It is easy to check that a positive definite matrix is non-singular, and that its inverse is

itself positive definite; this means that the capacitance and inductance matrices are positive

definite if the elastance and reluctance matrices of capacitors and inductors are so. No

condition is imposed on the elastance and reluctance matrices of q- and ϕ-memristors, except

for the fact that they cannot vanish identically since otherwise these devices would amount

to (current- or voltage-controlled) resistors. Note finally that, with terminological abuse, the

adverb “locally” is often omitted when a given set of devices satisfies the (semi)definiteness

requirement everywhere. Similarly, the term “incremental” is very often omitted in the

characteristic matrices.

3 Analytical results: nondegeneracy, null eigenvalues

The general framework introduced in Section 2 makes it possible to address different analyti-

cal properties of memristive circuits in broad generality. After introducing some background

material in subsection 3.1, we tackle in subsections 3.2, 3.3 and 3.4 two particular problems

which rely on linearization, emphasizing the role of the form of the different characteristic

matrices discussed above; specifically, the absence of memristance (resp. memductance) in

capacitors (resp. inductors), namely, the conditions ∂η/∂i ≡ 0, ∂ζ/∂v ≡ 0 holding for them,

together with the form of the elastance and reluctance matrices for different memristors,

will explain certain dynamical features of memristive circuits. Our approach should also be

useful in future analyses of many other aspects of memristive circuit dynamics, including

e.g. stability properties, oscillatory phenomena or bifurcations.
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3.1 Some auxiliary results from digraph theory

Many aspects of our analysis will rely on the properties of the directed graph or digraph

underlying a given electrical circuit. We compile below some background material on digraph

theory. The reader is referred to [1, 2, 5, 14, 30] for additional details.

We will work with a directed graph having n nodes, m branches and k connected compo-

nents. A subset K of the set of branches of a digraph is a cutset if the removal of K increases

the number of connected components of the digraph, and it is minimal with respect to this

property, that is, the removal of any proper subset of K does not increase the number of

components. In a connected digraph, a cutset is just a minimal disconnecting set of branches.

The removal of the branches of a cutset increases the number of connected components by

exactly one. Furthermore, all the branches of a cutset may be shown to connect the same

pair of connected components of the digraph which results from the deletion of the cutset.

This makes it possible to define the orientation of a cutset, say from one of these components

towards the other. The cutset matrix D̃ = (dij) is then defined by

dij =







1 if branch j is in cutset i with the same orientation

−1 if branch j is in cutset i with the opposite orientation

0 if branch j is not in cutset i.

The rank of D̃ can be proved to be n − k; any set of n − k linearly independent rows of D̃

defines a reduced cutset matrix D ∈ R
(n−k)×m. In a connected digraph, any reduced cutset

matrix has order (n− 1)×m.

The space spanned by the rows of D equals the one spanned by the rows of the so-called

incidence matrix, defined as A = (aij) with

aij =







1 if branch j leaves node i

−1 if branch j enters node i

0 if branch j is not incident with node i.

Similarly, chosen an orientation in every loop, the loop matrix B̃ is defined as (bij), where

bij =







1 if branch j is in loop i with the same orientation

−1 if branch j is in loop i with the opposite orientation

0 if branch j is not in loop i.

The rank of this matrix equals m−n+k. A reduced loop matrix B is any ((m−n+k)×m)-

submatrix of B̃ with full row rank.

We denote by BK (resp. BG−K) the submatrix of B defined by the columns which cor-

respond to branches belonging (resp. not belonging) to a given set of branches K; the same

applies to the cutset matrix D. Certain submatrices of B and D characterize the existence of

so-called K-cutsets and K-loops (that is, cutsets or loops just defined by branches belonging

to K), as stated below (cf. [30, Sect. 5.1]).
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Lemma 1. Let K be a subset of branches of a given digraph G. The set K does not contain

cutsets if and only if BK has full column rank or, equivalently, iff DG−K has full row rank.

Analogously, K does not contain loops if and only if DK has full column rank or, equiv-

alently, iff BG−K has full row rank.

Actually, the dimensions of the spaces kerBK and kerDK are defined by the number of

linearly independent K-cutsets and K-loops, respectively.

The proof of the following result can be found e.g. in [14, Sect. 7.4].

Lemma 2. If the columns of the reduced loop and cutset matrices B, D of a digraph are

arranged according to the same order of branches, then BDT = 0, DBT = 0.

The relations imDT = kerB and imBT = kerD hold true. This expresses that the cut

space imDT spanned by the rows of D can be described as kerB and, analogously, the cycle

space imBT spanned by the rows of B equals kerD [5]. These spaces are orthogonal to each

other since (imDT )⊥ = (kerB)⊥ = imBT .

Finally, when applying these results to circuit analysis, we will split the columns of B and

D according to the nature of the devices accommodated in the corresponding branches; Bq,

Bϕ, Dq, Dϕ describe the submatrices of B and D defined by q- and ϕ-devices; these matrices

will be further split into Bm, Bc, Br, Bu, Bw, Bl, Bg, Bj (resp. Dm, Dc etc.), according to

the division of q- and ϕ-devices into q-memristors, capacitors, current-controlled resistors

and voltage sources, and ϕ-memristors, inductors, voltage-controlled resistors and current

sources, respectively. With this notation, the identity BDT = 0 in Lemma 2 can be written

as

BmD
T
m +BcD

T
c + BrD

T
r +BuD

T
u +BwD

T
w + BlD

T
l + BgD

T
g +BjD

T
j = 0. (8)

3.2 Nondegenerate problems and the order of complexity

The order of complexity or state dimension of an electrical circuit is the number of variables

that can be freely assigned an initial value. Stemming from the work of Bashkow and Bryant

[3, 7, 8], a circuit composed of capacitors, inductors, resistors and voltage and current sources

is said to be nondegenerate if its order of complexity equals the number of reactive elements

(capacitors and inductors). A necessary condition for a circuit to be nondegenerate is its

topological nondegeneracy, that is, the absence of VC-loops (loops formed only by voltage

sources and/or capacitors) and IL-cutsets (cutsets defined only by current sources and/or

inductors). Different sufficient conditions can be given, involving e.g. the strict passivity of

the circuit matrices or the structure of the circuit spanning trees [12, 30, 32, 34, 35].

In Theorem 1 we address the characterization of the order of complexity of circuits with

fully nonlinear memristors, under strict passivity assumptions and restricting the discus-

sion to cases without VC-loops and IL-cutsets. We show that memristors, even under a

fully nonlinear assumption, do not introduce topological degeneracies; this means that ev-

ery memristor increases by one the order of complexity, regardless of its location in the
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circuit. The key difference with capacitors and inductors, which actually introduce degen-

eracies when entering VC-loops or IL-cutsets, is made by the fact that the characteristics of

these, namely, vc = η2(qc, t) and il = ζ2(ϕl, t), do not involve the current ic or the voltage vl,

respectively.

Note, in this regard, that the equations q′r = ir, q
′
u = iu, ϕ

′
g = vg, ϕ

′
j = vj will be excluded

from the dynamical description of the circuit, since the variables qr, qu, ϕg, ϕj are decoupled

from the rest of the system and are hence irrelevant from the dynamical point of view. This

means that the circuit dynamics will be defined by the model

q′mc = imc (9a)

ϕ′
wl = vwl (9b)

0 = vq − f(qmc, iq, t) (9c)

0 = iϕ − g(ϕwl, vϕ, t) (9d)

0 = Bqvq + Bϕvϕ (9e)

0 = Dqiq +Dϕiϕ, (9f)

in the understanding that qmc and ϕwl stand for (qm, qc) and (ϕw, ϕl), respectively. The

same splitting applies to imc and vwl. Notice that f and g group together the maps ηk, ζk
(k = 1, . . . , 4) arising in Tables 1 and 2 for the sets of q- and ϕ-devices.

Theorem 1. Consider a circuit without VC-loops and IL-cutsets in which the memristance,

resistance, memductance and conductance matrices M , R, W , G are positive definite. Then

its order of complexity is given by the total number of q- and ϕ-memristors, capacitors, and

inductors.

Proof. We will check that the relations (9c)-(9f) make it possible to write explicitly all the

branch voltages and currents in terms of qm, qc, ϕw, ϕl, and that these relations impose

no constraint among these variables in the absence of VC-loops and IL-cutsets. The way

to do so is to check that the matrix of partial derivatives of (9c)-(9f) with respect to the

branch voltages and currents vq, iq, vϕ, iϕ, is non-singular; a straightforward application of

the implicit function theorem yields the result.

This matrix of partial derivatives has the form

J =











Iq −Mq 0 0

0 0 −Wϕ Iϕ
Bq 0 Bϕ 0

0 Dq 0 Dϕ











(10)

with

Mq =
∂f

∂iq
, Wϕ =

∂g

∂vϕ
.
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Using a Schur reduction [19, 30], it is easy to see that (10) is non-singular if and only if so

it is

Jred =

(

BqMq Bϕ

Dq DϕWϕ

)

. (11)

According to the classification of q-devices into q-memristors, capacitors, resistors and

voltage sources, the matrix Mq has the block-diagonal structure block-diag{M, 0c, R, 0u},

where M and R are the incremental memristance and resistance matrices. Analogously, Wϕ

reads as block-diag{W, 0l, G, 0j}. This confers the matrix Jred in (11) the form

(

BmM 0 BrR 0 Bw Bl Bg Bj

Dm Dc Dr Du DwW 0 DgG 0

)

. (12)

Assume that (12) has a non-trivial left-kernel; that is, suppose that there exists a non-

vanishing (xT yT ) such that the following relations hold:

xTBmM + yTDm = 0 (13a)

yTDc = 0 (13b)

xTBrR + yTDr = 0 (13c)

yTDu = 0 (13d)

xTBw + yTDwW = 0 (13e)

xTBl = 0 (13f)

xTBg + yTDgG = 0 (13g)

xTBj = 0. (13h)

Multiply the identity (8) from the left by xT and from the right by y. Using (13b), (13d),

(13f) and (13h), we get

xT (BmD
T
m + BrD

T
r +BwD

T
w + BgD

T
g )y = 0.

This equation can be recast,using (13a), (13c), (13e) and (13g), as

xTBmM
TBT

mx+ xTBrR
TBT

r x+ yTDwWDT
wy + yTDgGDT

g y = 0. (14)

Be aware of the fact that MT and RT are positive definite since so they are M and R.

Together with the positive definiteness of W and G, this implies that the relations

xTBm = 0 (15a)

xTBr = 0 (15b)

yTDw = 0 (15c)

yTDg = 0 (15d)
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follow from (14). These relations yield, in turn,

yTDm = 0 (16a)

yTDr = 0 (16b)

xTBw = 0 (16c)

xTBg = 0. (16d)

Now, the identities (13f), (13h), (15a), (15b), (16c) and (16d) imply that x = 0, because

of the absence of VC-loops and Lemma 1. Similarly, (13b), (13d), (15c), (15d), (16a) and

(16b), together with Lemma 1 and the absence of IL-cutsets, yield y = 0. This means that

(12) and so J in (10) are indeed non-singular; therefore, the implicit function theorem makes

it possible to write vq, vϕ, iq, iϕ in terms of qm, qc, ϕw and ϕl, and this in turn yields an

explicit ODE formulated in terms of the charges of q-memristors and capacitors and the

fluxes of ϕ-memristors and inductors. The state dimension of this ODE is obviously defined

by the number of memristors, capacitors and inductors and the proof is complete. 2

Note that this result applies to fully nonlinear memristors, regardless of the actual form

of the maps η1 and ζ1, as far as the memristance M and the memductance W are positive

definite. It holds true, in particular, for Chua’s memristors.

The different role played in this regard by q-memristors and capacitors, on the one hand,

and by ϕ-memristors and inductors, on the other, becomes apparent in the light of the form

of the matrix (12). Indeed, the fact that the characteristic vc = η2(qc, t) of capacitors does

not involve the current ic is responsible for the vanishing block over Dc in (12). Together

with the null block over Du, this explains the key role of VC-loops in the state dimension

problem. By contrast, the presence of the M matrix within (12) makes the location of mem-

ristors irrelevant in this problem, showing that q-memristors cannot introduce topological

degeneracies. In particular, VCM-loops (with at least one q-memristor) do not reduce the

state dimension of the problem. The same reasoning applies to ϕ-memristors, inductors,

IL-cutsets and ILW-cutsets.

With more technical difficulties it is possible to show, assuming the elastance of capacitors

and the reluctance of inductors (or, equivalently, the capacitance and the inductance) to

be positive definite, that the order of complexity of topologically degenerate circuits with

fully nonlinear memristors is given by the total number of memristors plus the number

of capacitors in a normal tree (that is, a tree including all voltage sources, the maximum

possible number of capacitors, the minimum possible number of inductors and no current

source) and the number of inductors in a normal cotree. This provides an extension of

Bryant’s results [7, 8] to circuits with fully nonlinear memristors.

12



3.3 Null eigenvalues; regular equilibrium points

Many qualitative properties of dynamical systems at equilibria can be characterized in terms

of the linearized problem. In particular, zero eigenvalues of the linearization may be respon-

sible for stability changes and bifurcation phenomena. In particular, within the context of

memristive systems, some particular circuits with Chua-type memristors have been shown

in the literature to display null eigenvalues [25, 31]. Below we tackle this problem for general

circuits with fully nonlinear memristors, addressing Chua’s memristors as a particular case

with distinctive properties.

System (9) is a semiexplicit differential-algebraic equation (DAE) [6, 22, 23, 29, 30].

Equilibrium points are defined by the vanishing of its right-hand side, and the linearization

at a given equilibrium leads to the matrix pencil [15] λH −K, where H = block-diag{I, 0}

and K is the Jacobian matrix of the right-hand side at equilibrium. The spectrum of the

matrix pencil is the set of values of λ which make λH−K singular. In particular, the pencil

has null eigenvalues if and only if the Jacobian matrix K is singular.

An equilibrium point is said to be regular if and only if K is a non-singular matrix.

Regular equilibria are important regarding DC-solvability and Newton-based computations

[13]. The following result extends to systems with fully nonlinear memristors a property

already known for RLC circuits [16, 17, 24]. With the same terminological convention,

a VLW-loop is a loop defined by voltage sources, inductors and/or ϕ-memristors, and an

ICM-cutset is a cutset including only current sources, capacitors and/or q-memristors.

Theorem 2. Consider a memristive circuit with positive definite incremental resistance and

conductance matrices R, G. An equilibrium point of this circuit is regular if and only if

• the elastances Em, Ec of q-memristors and capacitors, as well as the reluctances Rw,

Rl of ϕ-memristors and inductors, are non-singular at the equilibrium; and

• the circuit does not have either VLW-loops or ICM-cutsets.

Proof. The Jacobian matrix K reads as

K =















0 0 0 Imc Iwl 0

−Emc 0 Iq −Mq 0 0

0 −Rwl 0 0 −Wϕ Iϕ
0 0 Bq 0 Bϕ 0

0 0 0 Dq 0 Dϕ















(17)

with

Emc =











Em 0

0 Ec

0 0

0 0











, Rwl =











Rw 0

0 Rl

0 0

0 0











(18)
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and

Imc =











Im 0 0 0

0 Ic 0 0

0 0 0 0

0 0 0 0











, Iwl =











0 0 0 0

0 0 0 0

Iw 0 0 0

0 Il 0 0











.

It is clear that the elastances Em, Ec and the reluctances Rw, Rl must be non-singular

for K to be so; if these requirements are met, the non-singularity of K relies on that of










0 0 Ir −R 0 0 0 0 0 0

0 0 0 0 0 −G 0 0 0 Ig
Bm Bc Br 0 0 Bg Bj 0 0 0

0 0 0 Dr Du 0 0 Dw Dl Dg











and, by means of a Schur reduction, on the non-singularity of

Kred =

(

Bm Bc BrR 0 Bg Bj 0 0

0 0 Dr Du DgG 0 Dw Dl

)

. (19)

The blocks comprising Bm, Bc, Bj show, in the light of Lemma 1, that the absence of ICM-

cutsets is necessary for Kred to be non-singular; analogously, the blocks including Du, Dw,

Dl rule out the presence of VLW-loops. Conversely, in order to show that the absence of

these configurations guarantees Kred to be non-singular, it suffices to check that a column-

reordering gives this matrix the form of Jred in (11); proceeding exactly as in the proof of

Theorem 1, and using only the positive definiteness of R and G, it is easy to check that

in the absence of VLW-loops and ICM-cutsets the matrix Kred (and then K) is actually

non-singular, as we aimed to show. 2

More is true, actually; proceeding as in Theorem 3 below, one can show that, in problems

in which the elastance of q-memristors and capacitors and the reluctance of ϕ-memristors

and inductors are non-singular, the geometric multiplicity of the zero eigenvalue of K equals

the number of independent VLW-loops and independent ICM-cutsets, where the notion of

independence relies on the cut- and cycle-spaces described in subsection 3.1.

3.4 Null eigenvalues in circuits with Chua-type memristors

A distinct feature of Chua’s memristors is that the elastance Em = ∂η1/∂qm and the re-

luctance Rw = ∂ζ1/∂ϕw do vanish at equilibrium points, because η1(qm, im) = M(qm)im
and ζ1(ϕw, vw) = W (ϕw)vw are linear in im and vw, respectively, and the identities im = 0,

vw = 0 hold at equilibria. Theorem 2 above then predicts the existence of null eigenvalues

in Chua-type memristive circuits owing to this zero-crossing property, as already observed

in specific examples [25, 31]. The number of memristive devices actually characterizes the

14



geometric multiplicity of the zero eigenvalue in a broad class of circuits with Chua-type

memristors, as detailed below.

Theorem 3. Consider a circuit in which the elastance Em of q-memristors and the re-

luctance Rw of ϕ-memristors do vanish at equilibria. If the resistance and conductance

matrices R, G are positive definite at a given equilibrium, and the elastance Ec of capaci-

tors and the reluctance Rl of inductors (equivalently, the capacitance and the inductance)

are non-singular, then the geometric multiplicity of the null eigenvalue equals the number of

memristors, independent VL-loops and independent IC-cutsets.

Proof. Making Em = 0 and Rw = 0 in (18), the corank of the matrix K can be easily seen

to equal the number of (q- and ϕ-) memristors plus the corank of



























0 0 Im 0 0 0 0 0 0 0 0 0

−Ec 0 0 Ic 0 0 0 0 0 0 0 0

0 0 0 0 Ir −R 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 Iw 0 0

0 −Rl 0 0 0 0 0 0 0 0 Il 0

0 0 0 0 0 0 0 −G 0 0 0 Ig
0 0 Bm Bc Br 0 0 Bg Bj 0 0 0

0 0 0 0 0 Dr Du 0 0 Dw Dl Dg



























. (20)

The corank of (20) in turn equals that of

(

BcEc 0 BrR 0 Bg Bj

0 DlRl Dr Du DgG 0

)

. (21)

Contrary to (19), (21) is not a square matrix, and its corank is defined by the dimension of

its (right) kernel. A vector (u, v, w, x, y, z) of the kernel of this matrix verifies

BcEcu = 0 (22a)

BrRw = 0 (22b)

Bgy = 0 (22c)

Bjz = 0 (22d)

DlRlv = 0 (22e)

Drw = 0 (22f)

Dux = 0 (22g)

DgGy = 0. (22h)

The relations (22) imply that (0, Ecu,Rw, 0, 0, 0, y, z) ∈ ker(Bm Bc Br Bu Bw Bl Bg Bj) =

kerB, and (0, 0, w, x, 0,Rlv,Gy, 0) ∈ ker(Dm Dc Dr Du Dw Dl Dg Dj) = kerD. Use then
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the identities kerB = imDT and kerD = imBT to derive the existence of vectors p, q

satisfying

0 = DT
mp, Ecu = DT

c p, Rw = DT
r p, 0 = DT

u p, 0 = DT
wp, 0 = DT

l p, y = DT
g p, z = DT

j p,

0 = BT
mq, 0 = BT

c q, w = BT
r q, x = BT

u q, 0 = BT
wq, Rlv = BT

l q, Gy = BT
g q, 0 = BT

j q.

Pre- and post-multiplying (8) by qT and p, respectively, we get, in the light of these identities,

wTRw + yTGTy = 0,

that is, w = y = 0 because of the positive definiteness of R and G. Then (Ecu, z) belongs to

ker(Bc Bj) and (x,Rlv) belongs to ker(Du Dl). Due to the non-singular nature of Ec and

Rl, this means that the corank of (20) equals the number of independent IC-cutsets plus the

number of independent VL-loops (cf. subsection 3.1). Hence, the corank of the matrix K,

and therefore the geometric multiplicity of its null eigenvalue, equals the number of (q- and

ϕ-) memristors plus the number of independent VL-loops and the number of independent

IC-cutsets, as we aimed to show. 2

In particular, in circuits without VL-loops and IC-cutsets, the geometric multiplicity

of the null eigenvalue matches exactly the number of memristors; this is the case in the

examples arising in [25, 31].

4 Concluding remarks

The fully nonlinear characteristics (3) and (4) introduced in the present paper might accom-

modate future devices arising in nonlinear circuit theory and displaying memristive effects,

or provide more accurate models for already existing devices. The general form of these

relations and their time-varying counterparts allows for a simple description of a very broad

class of electrical and electronic circuits; different dynamical features of these can be then

addressed in great generality. Several of these features can be understood to follow from

the special form of the characteristic matrices of the different devices arising in the analy-

sis. For instance, the zero-crossing property of Chua-type memristors makes them display a

vanishing elastance and reluctance at equilibria; from Theorems 1 and 3, it then follows that

in strictly passive circuits with Chua-type memristors, not exhibiting VC-loops, IL-cutsets,

VL-loops or IC-cutsets, the order of complexity equals the number of memristors plus reac-

tive elements, every memristor introducing a vanishing natural frequency in the linearized

problem. Similarly, the absence of null eigenvalues is characterized, for general memristive

circuits and in terms of the circuit matrices and the digraph topology, in Theorem 2. The

characterization of other analytical properties of memristive circuits within the framework

here introduced defines the scope of future research.
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[2] B. Andrásfai, Graph Theory: Flows, Matrices, Adam Hilger, 1991.

[3] T. R. Bashkow, The A matrix, new network description, IRE Trans. Circuit Theory 4

(1957) 117-119.

[4] S. Benderli and T. A. Wey, On SPICE macromodelling of TiO2 memristors, Electronic

Letters 45 (2009) 377-379.

[5] B. Bollobás, Modern Graph Theory, Springer-Verlag, 1998.

[6] K. E. Brenan, S. L. Campbell and L. R. Petzold, Numerical Solution of Initial-Value

Problems in Differential-Algebraic Equations, SIAM, 1996.

[7] P. R. Bryant, The order of complexity of electrical networks, Proceedings of the IEE,

Part C 106 (1959) 174-188.

[8] P. R. Bryant, The explicit form of Bashkow’s A matrix, IRE Trans. Circuit Theory 9

(1962) 303-306.

[9] X. Chen, G. Wu and D. Bao, Resistive switching behavior of Pt/Mg0.2Zn0.8O/Pt devices

for nonvolatile memory applications, Appl. Phys. Lett. 93 (2008) 093501.

[10] L. O. Chua, Memristor – The missing circuit element, IEEE Trans. Circuit Theory 18

(1971) 507-519.

[11] L. O. Chua and S. M. Kang, Memristive devices and systems, Proc. IEEE 64 (1976)

209-223.

[12] A. Encinas and R. Riaza, Tree-based characterization of low index circuit configurations

without passivity restrictions, Internat. J. Circuit Theory Appl. 36 (2008) 135-160.

[13] D. Estévez-Schwarz and U. Feldmann, Actual problems of circuit simulation in industry,

in Modeling, Simulation, and Optimization of Integrated Circuits (Oberwolfach, 2001),

Int. Ser. Numer. Math. 146 (2003) 83-99.

[14] L. R. Foulds, Graph Theory Applications, Springer, 1992.

[15] F. R. Gantmacher, The Theory of Matrices, vols. 1 & 2, Chelsea, 1959.

[16] B. C. Haggman and P. R. Bryant, Geometric properties of nonlinear networks containing

capacitor-only cutsets and/or inductor-only loops. Part I: Conservation laws, Cir. Sys.

Signal Process. 5 (1986) 279-319.

17



[17] B. C. Haggman and P. R. Bryant, Geometric properties of nonlinear networks containing

capacitor-only cutsets and/or inductor-only loops. Part II: Symmetries, Cir. Sys. Signal

Process. 5 (1986) 435-448.

[18] E. Hairer and G. Wanner, Solving Ordinary Differential Equations II: Stiff and

Differential-Algebraic Problems, Springer-Verlag, 1996.

[19] R. A. Horn and Ch. R. Johnson, Matrix Analysis, Cambridge Univ. Press, 1985.

[20] M. Itoh and L. O. Chua, Memristor oscillators, Intl. J. Bifurcation and Chaos 18 (2008)

3183-3206.

[21] M. Itoh and L. O. Chua, Memristor cellular automata and memristor discrete-time

cellular neural networks, Intl. J. Bifurcation and Chaos 19 (2009) 3605-3656.

[22] P. Kunkel and V. Mehrmann, Differential-Algebraic Equations. Analysis and Numerical

Solution, EMS, 2006.

[23] R. März, Differential algebraic equations anew, Appl. Numer. Math. 42 (2002) 315-335.

[24] T. Matsumoto, L. O. Chua and A. Makino, On the implications of capacitor-only cutsets

and inductor-only loops in nonlinear networks, IEEE Trans. Circuits and Systems 26

(1979) 828-845.

[25] M. Messias, C. Nespoli and V. A. Botta, Hopf bifurcation from lines of equilibria without

parameters in memristors oscillators, Intl. J. Bifurcation and Chaos 20 (2010) 437-450.

[26] B. Muthuswamy, Implementing memristor based chaotic circuits, Intl. J. Bifurcation

and Chaos 20 (2010) 1335-1350.

[27] B. Muthuswamy and P. P. Kokate, Memristor-based chaotic circuits, IETE Tech. Rev.

26 (2009) 417-429.

[28] Y. V. Pershin and M. Di Ventra, Spin memristive systems: Spin memory effects in

semiconductor spintronics, Physical Review B 78 (2008) 113309.

[29] P. J. Rabier and W. C. Rheinboldt, Theoretical and numerical analysis of differential-

algebraic equations, Handbook of Numerical Analysis Vol. VIII, 183-540, North-Holland

(2002).

[30] R. Riaza, Differential-Algebraic Systems. Analytical Aspects and Circuit Applications,

World Scientific, 2008.

[31] R. Riaza, State-space description of memristive systems, preprint, 2010.

18



[32] R. Riaza and A. Encinas, Augmented nodal matrices and normal trees, Discrete Appl.

Math. 158 (2010) 44-61.

[33] R. Riaza and C. Tischendorf, Semistate models of electrical circuits including memris-

tors, Internat. J. Circuit Theory Appl., accepted, in press, 2010.

[34] A. M. Sommariva, State-space equations of regular and strictly topologically degener-

ate linear lumped time-invariant networks: the multiport method, Internat. J. Circuit

Theory Appl. 29 (2001) 435-453.

[35] A. M. Sommariva, State-space equations of regular and strictly topologically degen-

erate linear lumped time-invariant networks: the implicit tree-tableau method, IEEE

Proceedings Circuits and Systems 8 (2001) 1139-1141.

[36] G. S. Snider, Spike-timing-dependent learning in memristive nanodevices, Proc. IEEE

Intl. Symp. Nanoscale Architectures 2008, pp. 85-92.

[37] D. B. Strukov, G. S. Snider, D. R. Stewart and R. S. Williams, The missing memristor

found, Nature 453 (2008) 80-83.

[38] X. Wang, Y. Chen, H. Xi, H. Li and D. Dimitrov, Spintronic memristor through spin-

torque-induced magnetization motion, IEEE Electron Device Letters 30 (2009) 294-297.

[39] J. Wu and R. L. McCreery, Solid-state electrochemistry in molecule/TiO2 molecular

heterojunctions as the basis of the TiO2 memristor, Journal of the Electrochemical

Society 156 (2009) 29-37.

[40] J. J. Yang, M. D. Pickett, X. Li, D. A. A. Ohlberg, D. R. Stewart and R. S. Williams,

Memristive switching mechanism for metal/oxide/metal nanodevices, Nature Nanotech-

nology 3 (2008) 429-433.

19


