562 research outputs found

    Memoryless Algorithms for the Generalized kk-server Problem on Uniform Metrics

    Full text link
    We consider the generalized kk-server problem on uniform metrics. We study the power of memoryless algorithms and show tight bounds of Θ(k!)\Theta(k!) on their competitive ratio. In particular we show that the \textit{Harmonic Algorithm} achieves this competitive ratio and provide matching lower bounds. This improves the 22k\approx 2^{2^k} doubly-exponential bound of Chiplunkar and Vishwanathan for the more general setting of uniform metrics with different weights

    On Randomized Memoryless Algorithms for the Weighted kk-server Problem

    Full text link
    The weighted kk-server problem is a generalization of the kk-server problem in which the cost of moving a server of weight βi\beta_i through a distance dd is βid\beta_i\cdot d. The weighted server problem on uniform spaces models caching where caches have different write costs. We prove tight bounds on the performance of randomized memoryless algorithms for this problem on uniform metric spaces. We prove that there is an αk\alpha_k-competitive memoryless algorithm for this problem, where αk=αk12+3αk1+1\alpha_k=\alpha_{k-1}^2+3\alpha_{k-1}+1; α1=1\alpha_1=1. On the other hand we also prove that no randomized memoryless algorithm can have competitive ratio better than αk\alpha_k. To prove the upper bound of αk\alpha_k we develop a framework to bound from above the competitive ratio of any randomized memoryless algorithm for this problem. The key technical contribution is a method for working with potential functions defined implicitly as the solution of a linear system. The result is robust in the sense that a small change in the probabilities used by the algorithm results in a small change in the upper bound on the competitive ratio. The above result has two important implications. Firstly this yields an αk\alpha_k-competitive memoryless algorithm for the weighted kk-server problem on uniform spaces. This is the first competitive algorithm for k>2k>2 which is memoryless. Secondly, this helps us prove that the Harmonic algorithm, which chooses probabilities in inverse proportion to weights, has a competitive ratio of kαkk\alpha_k.Comment: Published at the 54th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2013

    Weighted k-Server Bounds via Combinatorial Dichotomies

    Full text link
    The weighted kk-server problem is a natural generalization of the kk-server problem where each server has a different weight. We consider the problem on uniform metrics, which corresponds to a natural generalization of paging. Our main result is a doubly exponential lower bound on the competitive ratio of any deterministic online algorithm, that essentially matches the known upper bounds for the problem and closes a large and long-standing gap. The lower bound is based on relating the weighted kk-server problem to a certain combinatorial problem and proving a Ramsey-theoretic lower bound for it. This combinatorial connection also reveals several structural properties of low cost feasible solutions to serve a sequence of requests. We use this to show that the generalized Work Function Algorithm achieves an almost optimum competitive ratio, and to obtain new refined upper bounds on the competitive ratio for the case of dd different weight classes.Comment: accepted to FOCS'1

    The Randomized Competitive Ratio of Weighted k-Server Is at Least Exponential

    Get PDF
    The weighted k-server problem is a natural generalization of the k-server problem in which the cost incurred in moving a server is the distance traveled times the weight of the server. Even after almost three decades since the seminal work of Fiat and Ricklin (1994), the competitive ratio of this problem remains poorly understood even on the simplest class of metric spaces - the uniform metric spaces. In particular, in the case of randomized algorithms against the oblivious adversary, neither a better upper bound that the doubly exponential deterministic upper bound, nor a better lower bound than the logarithmic lower bound of unweighted k-server, is known. In this paper, we make significant progress towards understanding the randomized competitive ratio of weighted k-server on uniform metrics. We cut down the triply exponential gap between the upper and lower bound to a singly exponential gap by proving that the competitive ratio is at least exponential in k, substantially improving on the previously known lower bound of about ln k

    Metrical Service Systems with Multiple Servers

    Full text link
    We study the problem of metrical service systems with multiple servers (MSSMS), which generalizes two well-known problems -- the kk-server problem, and metrical service systems. The MSSMS problem is to service requests, each of which is an ll-point subset of a metric space, using kk servers, with the objective of minimizing the total distance traveled by the servers. Feuerstein initiated a study of this problem by proving upper and lower bounds on the deterministic competitive ratio for uniform metric spaces. We improve Feuerstein's analysis of the upper bound and prove that his algorithm achieves a competitive ratio of k((k+ll)1)k({{k+l}\choose{l}}-1). In the randomized online setting, for uniform metric spaces, we give an algorithm which achieves a competitive ratio O(k3logl)\mathcal{O}(k^3\log l), beating the deterministic lower bound of (k+ll)1{{k+l}\choose{l}}-1. We prove that any randomized algorithm for MSSMS on uniform metric spaces must be Ω(logkl)\Omega(\log kl)-competitive. We then prove an improved lower bound of (k+2l1k)(k+l1k){{k+2l-1}\choose{k}}-{{k+l-1}\choose{k}} on the competitive ratio of any deterministic algorithm for (k,l)(k,l)-MSSMS, on general metric spaces. In the offline setting, we give a pseudo-approximation algorithm for (k,l)(k,l)-MSSMS on general metric spaces, which achieves an approximation ratio of ll using klkl servers. We also prove a matching hardness result, that a pseudo-approximation with less than klkl servers is unlikely, even for uniform metric spaces. For general metric spaces, we highlight the limitations of a few popular techniques, that have been used in algorithm design for the kk-server problem and metrical service systems.Comment: 18 pages; accepted for publication at COCOON 201

    Competitive algorithms for generalized k-server in uniform metrics

    Get PDF
    The generalized k-server problem is a far-reaching extension of the k-server problem with several applications. Here, each server si lies in its own metric space Mi. A request is a k-tuple r = (r1, r2, … , rk), which is served by moving some server si to the point ri ∈ Mi, and the goal is to minimize the total distance traveled by the servers. Despite much work, no f(k)-competitive algorithm is known for the problem for k > 2 servers, even for special cases such as uniform metrics and lines. Here, we consider the problem in uniform metrics and give the first f(k)-competitive algorithms for general k. In particular, we obtain deterministic and randomized algorithms with competitive ratio k · 2k and O(k3log k) respectively. Our deterministic bound is based on a novel application of the polynomial method to online algorithms, and essentially matches the long-known lower bound of 2k − 1. We also give a (2^{2^{O(k)}} ) -competitive deterministic algorithm for weighted uniform metrics, which also essentially matches the recent doubly exponential lower bound for the problem
    corecore