2,719 research outputs found

    A taxonomy framework for unsupervised outlier detection techniques for multi-type data sets

    Get PDF
    The term "outlier" can generally be defined as an observation that is significantly different from the other values in a data set. The outliers may be instances of error or indicate events. The task of outlier detection aims at identifying such outliers in order to improve the analysis of data and further discover interesting and useful knowledge about unusual events within numerous applications domains. In this paper, we report on contemporary unsupervised outlier detection techniques for multiple types of data sets and provide a comprehensive taxonomy framework and two decision trees to select the most suitable technique based on data set. Furthermore, we highlight the advantages, disadvantages and performance issues of each class of outlier detection techniques under this taxonomy framework

    Online Row Sampling

    Get PDF
    Finding a small spectral approximation for a tall nƗdn \times d matrix AA is a fundamental numerical primitive. For a number of reasons, one often seeks an approximation whose rows are sampled from those of AA. Row sampling improves interpretability, saves space when AA is sparse, and preserves row structure, which is especially important, for example, when AA represents a graph. However, correctly sampling rows from AA can be costly when the matrix is large and cannot be stored and processed in memory. Hence, a number of recent publications focus on row sampling in the streaming setting, using little more space than what is required to store the outputted approximation [KL13, KLM+14]. Inspired by a growing body of work on online algorithms for machine learning and data analysis, we extend this work to a more restrictive online setting: we read rows of AA one by one and immediately decide whether each row should be kept in the spectral approximation or discarded, without ever retracting these decisions. We present an extremely simple algorithm that approximates AA up to multiplicative error Ļµ\epsilon and additive error Ī“\delta using O(dlogā”dlogā”(Ļµāˆ£āˆ£Aāˆ£āˆ£2/Ī“)/Ļµ2)O(d \log d \log(\epsilon||A||_2/\delta)/\epsilon^2) online samples, with memory overhead proportional to the cost of storing the spectral approximation. We also present an algorithm that uses O(d2O(d^2) memory but only requires O(dlogā”(Ļµāˆ£āˆ£Aāˆ£āˆ£2/Ī“)/Ļµ2)O(d\log(\epsilon||A||_2/\delta)/\epsilon^2) samples, which we show is optimal. Our methods are clean and intuitive, allow for lower memory usage than prior work, and expose new theoretical properties of leverage score based matrix approximation

    Coresets-Methods and History: A Theoreticians Design Pattern for Approximation and Streaming Algorithms

    Get PDF
    We present a technical survey on the state of the art approaches in data reduction and the coreset framework. These include geometric decompositions, gradient methods, random sampling, sketching and random projections. We further outline their importance for the design of streaming algorithms and give a brief overview on lower bounding techniques
    • ā€¦
    corecore