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Abstract. In this paper, we have proposed, developed and experimen-
tally validated our novel subspace data stream clustering, termed Pre-
DeConStream. The technique is based on the two phase mode of mining
streaming data, in which the first phase represents the process of the
online maintenance of a data structure, that is then passed to an offline
phase of generating the final clustering model. The technique works on
incrementally updating the output of the online phase stored in a micro-
cluster structure, taking into consideration those micro-clusters that are
fading out over time, speeding up the process of assigning new data points
to existing clusters. A density based projected clustering model in de-
veloping PreDeConStream was used. With many important applications
that can benefit from such technique, we have proved experimentally the
superiority of the proposed methods over state-of-the-art techniques.

1 Introduction

Data streams represent one of the most famous forms of massive uncertain data.
The continuous and endless flow of streaming data results in a huge amount of
data. The uncertainty of these data originates not only from the uncertain char-
acteristics of their sources as in most of the scenarios, but also from their ubiq-
uitous nature. The most famous examples of uncertain data streams are sensor
streaming data which are available in everyday applications. These applications
start from home scenarios like the smart homes to environmental applications
and monitoring tasks in the health sector [12], but do not end with military
and aerospace applications. Due to the nature, the installation and the running
circumstances of these sensors, the data they collect is in most cases uncertain.
Furthermore, the pervasive flow of data and the communication collision addi-
tionally leverage the certainty of collected data. The latter fact is the reason why
some other types of data streams can also be uncertain although they are not
produced from sensor data (e.g. streaming network traffic data).

Clustering is a well known data mining technique that aims at grouping sim-
ilar objects in the dataset together into same clusters, and dissimilar ones into
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different clusters, where the similarity is decided based on some distance func-
tion. Thus, objects separated by far distances are dissimilar and thus belong
to different clusters. In many applications of streaming data, objects are de-
scribed by using multiple dimensions (e.g. the Network Intrusion Dataset [1] has
42 dimensions). For such kinds of data with higher dimensions, distances grow
more and more alike due to an effect termed curse of dimensionality [5] (cf. the
toy example in Figure 1). Applying traditional clustering algorithms (called in
this context: full-space clustering algorithms) over such data objects will lead to
useless clustering results. In Figure 1, the majority of the black objects will be
grouped in a single-object cluster (outliers) when using a full-space clustering
algorithm, since they are all dissimilar, but apparently they are not as dissimilar
as the gray objects. The latter fact motivated the research in the domain of sub-
space and projected clustering in the last decade which resulted in an established
research area for static data. For streaming data on the other hand, although a
considerable research has tackled the full-space clustering (cf. Section 2.2), very
limited work has dealt with subspace clustering (cf. Section 2.3).
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Fig. 1. An example of subspce clustering.

Most full-space stream clustering algorithms use a two-phased (online-offline)
model (e.g CluStream [2] and DenStream [7], cf. Section 2.2). While the online
part summarizes the stream into groups called microclusters, the offline part per-
forms some well-known clustering algorithm over these summaries and gives the
final output as clustering of the data stream. Usually, the offline part represents
the bottleneck of the clustering process, and when considering the projected
clustering which is inherently more complicated compared to the full-space clus-
tering, the efficiency of a projected or subspace stream clustering algorithm
becomes a critical issue. In this paper we present a density-based projected clus-
tering over streaming data. Our suggested algorithm PreDeConStream tries to
find clusters over subspaces of the evolving data stream instead of searching
over the full space merely. The algorithm uses the famous (online-offline) model,
where in the offline phase, it efficiently maintains the final clustering by localizing
the part of the clustering result which was affected by the change of the stream
input within a certain time, and then sustaining only that part. Additionally,



the algorithm specifies the time intervals within which a guaranteed no-change
of the clustering result can be given.

The remainder of this paper is organized as follows: Section 2 gives a short
overview of the related work from different neighboring areas. Section 3 intro-
duces some required definitions and formulations to the problem. Our algorithm
PreDeConStream is introduced in Section 4, and then thoroughly evaluated in
Section 5. Then we conclude the paper with a short outlook in Section 6.

2 Related Work

In this section, we list the related work from three areas: subspace clustering of
static data, full-space stream clustering, and finally subspace stream clustering.

2.1 Subspace Clustering Algorithms over Static Data

According to [16], one can differentiate between two main classes of subspace
clustering algorithms that deal with static data:

– Subspace clustering algorithms [14] which aim at detecting all possible
clusters in all subspaces. In this algorithm class, each data object can be
part of multiple subspace clusters.

– Projected clustering algorithms [6] which assign each data object to
at most one cluster. For each cluster, a subset of projected dimensions is
determined which represents the projected subspace.

SubClu [14] is a subspace clustering algorithm that uses the DBSCAN [9]
clustering model of density connected sets. SubClu computes for each subspace
all clusters which DBSCAN would have found as well if applied on that specific
subspace. The subspace clusters are generated in a bottom-up way and for the
sake of efficiency, a monotonicity criteria [14] is used. If a subspace T does not
contain a cluster, then no higher subspace S with T ⊆ S can contain a cluster.

PreDeCon [6] is a projected clustering algorithm which adapts the concept
of density based clustering [9]. It uses a specialized similarity measure based on
the subspace preference vector (cf. Definition 6) to detect the subspace of each
cluster. Different to DBSCAN, a preference weighted core point is defined in
PreDeCon as the point whose number of preference dimensions is at most λ and
the preference weighted neighborhood contains at least µ points.

IncPreDeCon [15] is an incremental version of the algorithm PreDeCon [6]
designed to handle accumulating data. It is unable to handle evolving stream
data since it does not perform any removal or forgetting of aging data. Addition-
ally, the solution performs the maintenance after each insertion, which makes it
considerably inefficient, especially for applications with limited memory. The al-
gorithm we present in this paper adopts in some parts of its offline phase the
insertion method of IncPreDeCon, but fundamentally differs from IncPreDeCon
by maintaining the summaries of drifting streaming data, applying PreDeCon



on the microcluster level, including a novel deletion method, and carefully per-
forming the maintenance of the clustering after some time interval and not after
each receiving of an object.

2.2 Full-space Clustering Algorithms over Streaming Data

There is a rich body of literature on stream clustering. Approaches can be cate-
gorized from different perspectives, e.g. whether convex or arbitrary shapes are
found, whether data is processed in chunks or one at a time, or whether it is
a single algorithm or it uses an online component to maintain data summaries
and an offline component for the final clustering. Convex stream clustering ap-
proaches are based on a k-center clustering [2, 11]. Detecting clusters of arbitrary
shapes in streaming data has been proposed using kernels [13], fractal dimen-
sions [17] and density based clustering [7, 8]. Another line of research considers
the anytime clustering with the existence of outliers [10].

2.3 Subspace Clustering Algorithms over Streaming Data

Similar to the offline clustering algorithms, two types of stream clustering al-
gorithms exist: subspace and projected stream clustering algorithms. However
there is, to the best of our knowledge, only one subspace clustering algorithm
and two projected clustering ones over streaming data.

Sibling Tree [19] is a grid-based subspace clustering algorithm where the
streaming distribution statistics is monitored by a list of grid-cells. Once a grid-
cell is dense, the tree grows in that cell in order to trace any possible higher
dimensional cluster.

HPStream [3] is a k-means-based projected clustering algorithm for high di-
mensional data stream. The relevant dimensions are represented by a d-dimensional
bit-vector D, where 1 marks a relevant dimension and 0 otherwise. HPStream
uses a projected distance function, called Manhattan Segmental distance MSD
[4], to determine the nearest cluster. HPStream cannot detect arbitrary cluster
shapes and a parameter for the number of cluster k has to be given by the user,
which is in not intuitive in most scenarios. Additionally, as a k-means based
approach, HPStream is a bit sensitive to outliers. The model described in this
paper is able to detect arbitrarily shaped and numbered clusters in subspaces
and, due to its density-based method, is less sensitive to outliers.

HDDStream [18] is a recent density-based projected stream clustering algo-
rithm that was developed simultaneously with PreDeConStream, and published
after the first submission of this paper. HDDStream performs an online summa-
rization of both points and dimensions and then, similar to PreDeConStream
it performs a modified version of PreDeCon in the offline phase. Different from
our algorithm, HDDStream does not optimize the offline part which is usually
the bottleneck of subspace-stream clustering algorithm. In the offline phase, our
algorithm localizes effects of the stream changes and maintains the old cluster-
ing results by keeping non-affected parts. Additionally, our algorithm defines the



time intervals where a guaranteed no-change of the clustering result exists, and
organizes the online summaries in multiple lists for a faster update.

3 Problem Formulation and Definitions

In this section, we formulate our related problems and give some definitions and
data structures that are needed to introduce our PreDeConStream algorithm.
In its online phase, our algorithm adopts the microcluster structure used in
most other streaming algorithms [2], [7] with an adaptation to fit our problem
(cf. Definitions 2-4). Later, we introduce a data structure and some definitions
which are related to the offline phase (cf. Definition 5). Since the algorithm uses
a density-based clustering over its online and offline phases, similar notations
that appear in both phases are differentiated with an F subscript for the offline
phase and N for the online phase.

3.1 Basic Definitions

Definition 1. The Decaying Function The fading function [7] used in Pre-
DeConStream is defined as f(t) = 2−λt, where 0 < λ < 1 The weight of the data
stream points decreases exponentially over time, i.e the older a point gets, the
less important it gets. The parameter λ is used to control the importance of the
historical data of the stream.

Definition 2. Core Microcluster A core microcluster at time t is defined as
a group of close points p1, . . . , pn with timestamps t1, . . . , tn. It is represented by
a tuple CMC(w, c, r) with:

1. Weight, w =
∑n
j=1 f(t− tj), with w ≥ µN

2. Center, c =
∑n
j=0 f(t−tj)pj

w

3. Radius, r =
∑n
j=0 f(t−tj)dist(pj ,c)

w , with r ≤ εN

The weight and the statistical information about the stream data decay accord-
ing to the fading function (cf. Definition 1). The maintenance of the microclusters
is discussed in Definition 4. Two additional types of microclusters are also given,
the potential microcluster and the outlier microcluster, to allow the algorithm
to quickly recognize changes in the data stream.

Definition 3. Potential and Outlier microcluster A potential microclus-
ter PMC = (CF 1, CF 2, w, c, r) is defined as follows:

1. Weight, w =
∑n
j=1 f(t− Tj) with w ≥ βµN

2. Linear weighted sum of the points, CF 1 =
∑n
j=1 f(t− Tj)pj

3. linear weighted squared sum of the points, CF 2 =
∑n
j=1 f(t− Tj)p2j

4. Center c = CF 1

w



5. Radius r =

√
|CF 2|
w −

(
|CF 1|
w

)2
An outlier microcluster OMC = (CF 1, CF 2, w, c, r, t0) is defined as PMC with
the following modifications:

1. Weight w =
∑n
j=1 f(t− Tj) with w < βµN

2. An additional entry with the creation time t0, to decide whether the outlier
microcluster is being evolving or is fading out.

The parameter β controls how sensitive the algorithm is to outliers.

Definition 4. Microclusters Maintenance With the progress of the evolving
stream, any core, potential, or outlier microcluster at time t MCt = (CF 1, CF 2, w)
is maintained as follows: If a point p hits MC at time t+1 then its statistics be-
come: MCt+1 = (2−λ ·CF 1+p, 2−λ ·CF 2+p2, 2−λ ·w+1) Otherwise, if no point
was added to MC for any time interval δt, the microcluster can be updated after
any time interval δt as follows: MCt+δt = (2−λδt · CF 1, 2−λδt · CF 2, 2−λδt · w).

It should be noted that this updating method is different from that in DenStream
[7]. The modification considers the decaying of the other old points available in
MC, even if MC was updated. This makes the algorithm faster in adapting to
the evolving stream data. Additionally, this gives our microcluster structure an
upper bound for the weight (wmax) of the microcluster which will be useful for
the maintenance of the offline part as we will see in Section 3.2.

Lemma 1. The maximum weight wmax of any microcluster MC is 1
1−2−λ .

Proof. Assuming that all the points of the stream hit the same microcluster
MC. The definition of the weight w =

∑t
t′=0 2−λ(t−t

′) can be transformed with
the sum formula for geometric series as following:

w =

t∑
t′=0

2−λ(t−t
′) =

1− 2−λ(t+1)

1− 2−λ
(1)

Thus, the maximum weight of a microcluster is:

wmax = limt→∞ w = limt→∞
1−2−λ(t+1)

1−2−λ = 1
1−2−λ .

Any newly created microcluster needs a minimum time Tp to grow into a poten-
tial microcluster, during this time the microcluster is considered as an outlier
microcluster. Similarly, there is a minimum time Td needed for a potential mi-
crocluster to fade into an outlier microcluster.

Lemma 2. A) The minimum timespan for a newly created microcluster to grow

into a potential microcluster is: Tp =
⌈
1
λ log2

(
1

1−βµN (1−2−λ)

)
− 1
⌉

.

B) the minimum timespan needed for a potential microcluster to fade into an
outlier microcluster is: Td =

⌈
1
λ log2(βµN )

⌉
.



Proof. A)The minimum timespan needed for a newly created microcluster to
become potential is Tp = tp − t0, where tp is the first timestamp where the mi-
crocluster becomes potential and t0 the creation time of the outlier microcluster.
According to Def. 3, a microcluster becomes potential when its weight w becomes

w ≥ βµN . Thus, from Equation 1: w =
∑Tp
t′=t0

2−λ(t−t
′) = 1−2−λ(Tp+1)

1−2−λ ≥ βµN .

⇒ Tp =
⌈
1
λ log2

(
1

1−βµN (1−2−λ)

)
− 1
⌉
.

B)Let Td = td − tp be the minimum timespan needed for a potential micro-
cluster to be deleted, where tp is the last timestamp where the microcluster
was still potential, and td is the time when it is deleted. For the deletion,
the weight of an outlier microcluster has to be less than wmin = 1, because
the start weight of a newly created microcluster is 1. Let wp be the last time
when the microcluster was potential, according to Def. 4, Td is the smallest
no-hit interval that is needed for a potential microcluster to become outlier.
Thus: Td is the smallest value which makes: wp · 2−λTd < 1. But we know that
wp = βµN ⇒ Td =

⌈
1
λ log2(βµN )

⌉
.

Definition 5. Minimum Offline Clustering Validity Interval The mini-
mum validity interval of an offline clustering Tv defines the time within which
PreDeConStream does not need to update the offline clustering since it is still
valid because no change of the status of any microcluster status happened. It is
defined as: Tv = min{Tp, Td}

Definition 6. Subspace Preference Vector wc [6] For each dimension i, if
the variance of the microclusters c of the Euclidean ε-neighborhood NεF (c) is
below a user defined threshold δ, then the i-th entry of the preference subspace
vector wc is set to a constant κ� 1, otherwise the entry is set to 1.

3.2 a Data Structure to Manage the Microclusters

A data structure is needed to manage the updated and non-updated microclus-
ters at each timestamp in an efficient and effective way. The main idea is that
the algorithm does not need to check for all potential microclusters, at each
timestamp, whether the potential microcluster remains potential or fades into
a deleted microcluster. Therefore a data structure is introduced where only a
subset of all the potential microclusters needs to be checked. We group the mi-
croclusters into multiple lists according to their weight. The borders between
these lists are selected as below (cf. also Figure 2) such that all microclusters in
a list that are not hit in the previous timestamp will fade to the lower-weighted
list. Thus, only the weight of the one which was hit needs to be checked. There
are two types of lists: outlier lists loj , and potential lists: lpi . The borders of the

lists are: Wd = 1,Wmin = βµN ,Wmax = 1
1−2−λ . The internal borders are se-

lected as: wpi =
wpi−1

2−λ
for the potential lists, and woi = 2−λwoi−1 +1 for the outlier

lists. It should be noted, that in this case, only the lists around Wmin from
both outlier and potential sides (cf. Figure 2) need to be checked each Tv to see
whether the current offline clustering is still valid as we will see in Section 4.



Fig. 2. An example of outlier and potential lists visualized w.r.t. their weights.

4 The PreDeConStream Algorithm

Initialisation Phase In lines 1-4 of Algorithm 1, the minimum timespan Tv

Algorithm 1 PreDeConStream(DS, εN , µN , λ, εF , µF , β, τ)

1: Tp ←
⌈

1
λ

log2

(
1

1−βµN (1−2−λ)

)
− 1
⌉
;

2: Td ←
⌈
1
λ

log2(βµN )
⌉
;

3: Tv ← min{Tp, Td};
4: initialisation phase
5: repeat
6: get next point p ∈ DS with the current timestamp tc
7: process(p);
8: maintain microclusters in data structure
9: if (tc mod Tv) == 0 then

10: C ← updateClustering(C);
11: end if
12: if user request clustering is received then
13: return clustering C
14: end if
15: until data stream terminates

based on the user’s parameter setting is computed. Furthermore, PreDeCon-
Stream needs an initial set of data stream points to generate an initial set of
microclusters for the online part. Therefore a certain amount of stream data
is buffered and on this initial data, the points are found, whose neighborhood
contains at least βµN points in its εF -neighborhood. If a point p is found, a
potential microcluster is created by p and all the points in its neighborhood and
they are removed from the initial points. This is repeated until no new potential
microcluster is found. Finally the generated initial potential microclusters are
inserted into the corresponding lists and the initial clustering is computed with
an adapted version of PreDeCon [6].
Offline: Maintenance of the Resulting Subspace Clustering In Algorithm
2, the new arriving data points p ∈ DS of the stream data within timestamp
t are merged with the existing microclusters. In Lines 1-4 of Algorithm 2, the
nearest potential microcluster cp is searched for in all the lists of the potential



microclusters lp. The algorithm clusters the incoming point p ∈ DS tentatively
to cp to check, if the point actually fits into the potential microcluster cp. If the
radius rp of the temporary microcluster cp is still less than εF , the point can be
clustered into cp without hesitation. If p does not fit into the nearest potential

Algorithm 2 process(data point p)

1: search nearest potential microcluster cp in all the lists lp

2: merge p tentatively into cp
3: if rp ≤ εN then
4: insert p into cp
5: else
6: search nearest outlier microcluster co in all the lists lo

7: merge p tentatively into co
8: if ro ≤ εN then
9: insert p into cp

10: if wo ≥ βµN then
11: insert co into potential list lpmin and remove it from outlier list lomax

12: end if
13: else
14: create new outlier microcluster with p
15: end if
16: end if

microcluster cp, (cf. Lines 5-12 of Algorithm 2), the algorithm searches for the
nearest outlier microcluster co in the outlier lists lo. The algorithm checks again
if its radius ro of co is still less than εN , when the point is tentatively added
to co. If the point fits into co and it is in the highest list of the outliers lo, the
algorithm checks if the weight wo is greater than or equal to βµN . If that is
the case, the microcluster co is inserted into the lowest list lpmin of the potential
microclusters and has to be considered in the offline part. If the point does not
fit into any existing microcluster, a new outlier microcluster is created with this
point and is inserted into the outlier microcluster list lo0, (cf. Line 14).
Online: Processing of the Data Stream In Lines 1-10 of Algorithm 3, for
each newly created potential microcluster cp, its subspace preference vector wcp
is computed. Furthermore, for each potential microcluster cq ∈ NεF (cp), the
preference subspace vector of each cq is updated and checked if its core member
property has changed. If that is the case, it is added to the UPDSEEDi set. In
Lines 11-19 of Algorithm 3, all the potential microclusters are found which are
affected by removing the potential microclusters which faded out in the online
part. For each potential microcluster cq ∈ NεF (cd), the preference subspace vec-
tor of each cq is updated and added to UPDSEEDd if the core member property
of cq has changed because of deleting cd out of its εF -neighborhood. If all the
affected potential microclusters were found, UPDSEEDi and UPDSEEDd can
be merged to UPDSEED. Finally in Lines 20-22, the potential microclusters
of UPDSEED need to be reinserted into the clustering. Starting from a poten-



Algorithm 3 updateClustering(C)

1: for all cp ∈ Inserted PMC do
2: compute the subspace preference vector wcp
3: for all cq ∈ NεF (cp) do
4: update the subspace preference vector of cq
5: if core member property of cq has changed then
6: add cq to AFFECTED CORESi
7: end if
8: end for
9: compute UPDSEEDi based on AFFECTED CORESi

10: end for
11: for all cd ∈ Deleted PMC do
12: for all cq ∈ NεF (cd) do
13: update the subspace preference vector of cq
14: if core member property of cq has changed then
15: add cq to AFFECTED CORESd
16: end if
17: end for
18: compute UPDSEEDd based on AFFECTED CORESd
19: end for

UPDSEED ← UPDSEEDi ∪ UPDSEEDd
20: for all cp ∈ UPDSEED do
21: call expandCluster() of PreDeCon [6] by considering the old cluster structure;
22: end for

tial microcluster in UPDSEED, the function expandClusters() of the algorithm
PreDeCon [6] is called under consideration of the existing clustering. This is re-
peated until all the potential microclusters cp ∈ UPDSEED are clustered into
a cluster or marked as noise.

5 Experimental Evaluation

In this section, the experimental evaluation of PreDeConStream is presented.
PreDeConStream, as well as the two comparative algorithms, HPStream as a
k-means based projected algorithm and DenStream as a fullspace density based
algorithm, were implemented in Java. All the experiments were done on a Linux
operating system with a 2.4 GHz processor and 3GB of memory.

Datasets For the evaluation of PreDeConStream several datasets were used:
1. Synthetic Dataset: SynStream3D consists of 3-dimensional 4000 objects with-
out noise that form at the beginning two arbitrarily shaped clusters over full
space. After some time, the data stream evolves so that for each cluster different
dimensions of both clusters become irrelevant.
2. Synthetic Dataset: N100kC3D50R40 generated similar to [7] with 100000 data
objects forming 3 clusters with 40 relevant dimensions out of 50.



3. Real Dataset: Network Intrusion Detection data set KDD CUP’99 (KDD-
cup)[1] used to evaluate several stream clustering algorithms [3, 7] with 494021
TCP connections, each represents either a normal connection, or any of 22 dif-
ferent types of attacks (cf. Figure 4). Each connection consists of 42 dimensions.
4. Real Dataset: Physiological Data, ICML’04 (PDMC) is a collection of ac-
tivities which was collected by test subjects with wearable sensors over several
months. The data set consists of 720792 data objects, each data object has 15
attributes and consists of 55 different labels for the activities and one additional
label if no activity was recorded.

Evaluation measure and Parameter settings To evaluate the quality of
the clustering results, the cluster purity measure [3, 7] is used. For the efficiency,
the runtime in seconds was tested. In PreDeConStream the offline parameters
εF and µF specify the density threshold that the clusters must exceed in the
offline algorithm part. A lower bound for εF is the online parameter εN . In the
experiments, εF was set to at least 2 × εN . Unless otherwise mentioned, the
parameters for PreDeConStream were set similar to [7] as follows: decay factor
λ = 0.25, initial data object Init = 2000, and horizon H = 5.

Experiments Purity and runtime were tested for the three algorithms.
A. Evaluation of Clustering Quality: Using the SynStream3D dataset for
both PreDeconStream and Denstream, the online parameters are set to εN = 4,
µN = 5 and λ = 0.25. For PreDeConStream, the maximal preference dimension-
ality is set to τ = 2 and µF = 3. The stream speed was set to 100 points per time
unit. With this speed setting, the data stream evolves at timestamp 26, i.e. one
dimension for each cluster becomes irrelevant. It can be seen from Figure 3(a)
that the cluster purity of PreDeConStream and DenStream is 100% until the
data stream changes, which is not the case for HPStream. This is because both
can detect clusters with arbitrarily cluster shapes. Beginning from time unit: 26
the stream evolvs such that in each cluster one dimension is no longer relevant
and thus DenStream as a fullspace clustering algorithm, does not detect any
cluster. Similarly, Figure 3(b) shows the purity results of both algorithms over
the N100C3D50R40 dataset. It can be seen that PreDeConStream outperforms
HPStream. The time units are selected in such a way that the changes of the
cluster purity can be observed when the stream evolves. It can be observed that
HPStream has problems with detecting the changes in the stream. That is be-
cause the radius of the projected clusters might be too high and the new points
are clustered wrong. PreDeConStream adapts to the changes in the stream fast
and keeps a high cluster purity. On the Network Intrusion data set, the stream
speed was set to 1000 points per time unit. Since the Network Intrusion data set
was already used in [3, 7], the same parameter settings are chosen for DenStream
and HPStream as in [3, 7]. Since PreDeConStream also builds on a microcluster
structure, similar parameters settings for the online part of PreDeConStream
are chosen, to have a fair comparison. For PreDeConStream: β = 1.23, µF = 5,
and τ = 32. For all the three algorithms, the decaying factor λ is set to 0.25.
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Fig. 3. Clustering purity for: (a) SynStream3D dataset, (b) N100C3D50R40 dataset.

Figure 5(a) shows the purity results for the KDDcup Dataset. It can be
seen that PreDeConStream produces the best possible clustering quality. For the
evaluation, measurements at timestamps where some attacks exist were selected.
The data recordings at timestamp 100 and all the recordings within the horizon
5 were only attacks of the type “smurf”. At this time unit any algorithm could
achieve 100% purity. The attacks that appeared within horizonH = 5 in different
timestamps are listed in Figure 4. By comparing Figures 4 and 5(a), one can

at timestamp 150, the data recordings consist of 373 “normal”, 380 “satan”, 5
“buffer overflow”, 99 “teardrop” and 143 “smurf” attacks.

Normal or Objects within horizon H = 5 at time unit
attack Type 150 350 373 400

normal 4004 4097 892 406

satan 380 0 0 0

buffer overflow 7 1 2 0

teardrop 99 99 383 0

smurf 143 0 819 2988

ipsweep 52 182 0 0

loadmodule 6 0 0 1

rootkit 1 0 0 1

warezclient 307 0 0 0

multihop 0 0 0 0

neptune 0 618 2688 1603

pod 0 1 99 0

portsweep 0 1 117 1

land 0 1 0 0

sum 5000 5000 5000 5000

Table 1. Table of stream data within the horizon H = 5, stream speed = 1000

The dominating connection type within the horizon was “normal” connec-
tions. It can be seen that the purity of PreDeConStream and DenStream are
both over 95%. The reason here is that both can detect clusters of arbitrary
shapes, whereas the radius of the existing clusters in HPStream is probably too
high and some attacks might get clustered wrong.

Both algorithms have a roughly 20% higher purity than HPStream. At times-
tamp 350, the records consist of 381 “normal”, 618 “neptune and 1 ”land“ at-
tacks. HPStream has again a lower purity than PreDeConStream. At timestamp
373, the records consist of 237 ”normal“, 761 neptune and 2 ”buffer overflow“
attacks. It can be seen that PreDeConStream does not always surpass the com-
peting algorithm DenStream, but the clustering purity is always over 90%.

The results show that PreDeConStream is also resistant against outliers. At
the timestamp 350 and 400 there were some outlier attacks within the horizon,
e.g. “rootkit” or “portsweep” attacks. Furthermore it can be seen that detecting
arbitrarily cluster shapes in different projected spaces is important for this kind
of dataset. PreDeConStream outperforms HPStream and DenStream also has a
considerable higher purity than HPStream.

This experiment compares PreDeConStream with HPStream and DenStream
on the Physiological data set. Figure 4(b) shows the purity results of the three
algorithms. The stream speed is set to 1000 and the horizon H is set to 1. For

Fig. 4. Labels of KDDcup data stream within the horizon H = 5, stream speed = 1000.

observe that PreDeConStream is also resistant against outliers. At the timestamp
350 and 400 there were some outlier attacks within the horizon which affected
other algorithms less than PreDeConStream.

Figure 5(b) shows the purity results over the Physiological dataset. The
stream speed = 1000 and H = 1 . Again, the timestamps were selected in
such a way that there are different activity labels within one time unit. It can
be seen from Figure 5(b) that PreDeConStream has the highest purity.
B. Evaluation of Efficiency: The real datasets are used to test the efficiency
of PreDeConStream against HPStream. The parameters were set the same way
as for the previous experiments on these datasets and the results are shown in
Figure 6. Although it is unfair to compare the runtime of a completely density-
based approach against a k-means based one, but Figures 6(a) and 6(b) show



70

75

80

85

90

95

100

100 150 350 373 400

Cl
us
te
r P

ur
ity

 %

Time Unit

PreDeConStream HPStream DenStream

(a)

60

65

70

75

80

85

90

95

100

20 60 145 200

Cl
us
te
r P

ur
ity

 %

Time Unit

PreDeConStream HPStream DenStream

(b)

Fig. 5. Clustering purity for: (a) KDDcup dataset, (b) PDMC dataset.
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Fig. 6. Runtime results for: (a) KDDcup dataset with a clustering request at each
time unit, (b) PDMC dataset with a clustering request at each 20th time unit, and (c)
PDMC dataset with different clustering request intervals.

a considerable positive effect of our clustering maintenance model when the
clustering requests frequency decreases. Usually, clustering requests are not ex-
tremely performed at each timestamp or even at each 20th timestamp. This
fact motivated a further experiment where we tested the performance of the two
algorithms for different clustering frequencies. The result which is depicted in
Figure 6(c) confirms our assumption. Due to its clustering maintenance model,
PreDeConStream performs better with higher clustering requests intervals. A
further experimental evaluation of PreDeConStream was done in [20].

6 Conclusions and Future Work

In this paper we presented a novel algorithm termed PreDeConStream. Based
on the two phase process of mining data streams, our technique builds a micro-
cluster-based structure to store an online summary of the streaming data. The
technique is based on subspace clustering targeting applications with high di-
mensionality of data. For the first time we have utilised projection, density-based
clustering, and cluster fading. As a result our technique has proved experimen-
tally its superiority over state-of-the-art techniques. In the future we plan to
deploy the technique in a real sensor network testbed, in order to prove its feasi-
bility. Furthermore, a thorough experimental study with different configuration
of clusters in the network is planned.
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