6 research outputs found

    SOMA A Tool for Synthesizing and Optimizing Memory Accesses in ASICs

    Get PDF
    Arbitrary memory dependencies and variable latency memory systems are major obstacles to the synthesis of large-scale ASIC systems in high-level synthesis. This paper presents SOMA, a synthesis framework for constructing Memory Access Network (MAN) architectures that inherently enforce memory consistency in the presence of dynamic memory access dependencies. A fundamental bottleneck in any such network is arbitrating between concurrent accesses to a shared memory resource. To alleviate this bottleneck, SOMA uses an application-specific concurrency analysis technique to predict the dynamic memory parallelism profile of the application. This is then used to customize the MAN architecture. Depending on the parallelism profile, the MAN may be optimized for latency, throughput or both. The optimized MAN is automatically synthesized into gate-level structural Verilog using a flexible library of network building blocks. SOMA has been successfully integrated into an automated C-to-hardware synthesis flow, which generates standard cell circuits from unrestricted ANSI-C programs. Post-layout experiments demonstrate that application specific MAN construction significantly improves power and performance

    A comprehensive approach to DRAM power management

    Full text link
    This paper describes a comprehensive approach for using the memory controller to improve DRAM energy efficiency and manage DRAM power. We make three contributions: (1) we describe a simple power-down policy for exploiting low power modes of modern DRAMs; (2) we show how the idea of adaptive history-based memory schedulers can be naturally extended to manage power and energy; and (3) for situations in which additional DRAM power reduction is needed, we present a throttling approach that arbitrarily reduces DRAM activity by delaying the issuance of memory commands. Using detailed microarchitectural simulators of the IBM Power5+ and a DDR2-533 SDRAM, we show that our first two techniques combine to increase DRAM energy efficiency by an average of 18.2%, 21.7%, 46.1%, and 37.1 % for the Stream, NAS, SPEC2006fp, and commercial benchmarks, respectively. We also show that our throttling approach provides performance that is within 4.4 % of an idealized oracular approach.

    Power aware data and memory management for dynamic applications

    Get PDF
    In recent years, the semiconductor industry has turned its focus towards heterogeneous multiprocessor platforms. They are an economically viable solution for coping with the growing setup and manufacturing cost of silicon systems. Furthermore, their inherent flexibility perfectly supports the emerging market of interactive, mobile data and content services. The platform’s performance and energy depend largely on how well the data-dominated services are mapped on the memory subsystem. A crucial aspect thereby is how efficient data is transferred between the different memory layers. Several compilation techniques have been developed to optimally use the available bandwidth. Unfortunately, they do not take the interaction between multiple threads into account and do not deal with the dynamic behaviour of these novel applications. The main limitations of current techniques are outlined and an approach for dealing with them is introduced

    Power-efficient data management for dynamic applications

    Get PDF
    In recent years, the semiconductor industry has turned its focus towards heterogeneous multi-processor platforms. They are an economically viable solution for coping with the growing setup and manufacturing cost of silicon systems. Furthermore, their inherent flexibility also perfectly supports the emerging market of interactive, mobile data and content services. The platform's performance and energy depend largely on how well the data-dominated services are mapped on the memory subsystem. A crucial aspect thereby is how efficient data is transferred between the different memory layers. Several compilation techniques have been developed to optimally use the available bandwidth. Unfortunately, they do not take the interaction between multiple threads running on the different processors into account, only locally optimize the bandwidth nor deal with the dynamic behavior of these applications. The contributions of this chapter are to outline the main limitations of current techniques and to introduce an approach for dealing with the dynamic multi-threaded of our application domain

    Reducing main memory access latency through SDRAM address mapping techniques and access reordering mechanisms

    Get PDF
    As the performance gap between microprocessors and memory continues to increase, main memory accesses result in long latencies which become a factor limiting system performance. Previous studies show that main memory access streams contain significant localities and SDRAM devices provide parallelism through multiple banks and channels. These locality and parallelism have not been exploited thoroughly by conventional memory controllers. In this thesis, SDRAM address mapping techniques and memory access reordering mechanisms are studied and applied to memory controller design with the goal of reducing observed main memory access latency. The proposed bit-reversal address mapping attempts to distribute main memory accesses evenly in the SDRAM address space to enable bank parallelism. As memory accesses to unique banks are interleaved, the access latencies are partially hidden and therefore reduced. With the consideration of cache conflict misses, bit-reversal address mapping is able to direct potential row conflicts to different banks, further improving the performance. The proposed burst scheduling is a novel access reordering mechanism, which creates bursts by clustering accesses directed to the same rows of the same banks. Subjected to a threshold, reads are allowed to preempt writes and qualified writes are piggybacked at the end of the bursts. A sophisticated access scheduler selects accesses based on priorities and interleaves accesses to maximize the SDRAM data bus utilization. Consequentially burst scheduling reduces row conflict rate, increasing and exploiting the available row locality. Using a revised SimpleScalar and M5 simulator, both techniques are evaluated and compared with existing academic and industrial solutions. With SPEC CPU2000 benchmarks, bit-reversal reduces the execution time by 14% on average over traditional page interleaving address mapping. Burst scheduling also achieves a 15% reduction in execution time over conventional bank in order scheduling. Working constructively together, bit-reversal and burst scheduling successfully achieve a 19% speedup across simulated benchmarks
    corecore