3,095 research outputs found

    Integration of advanced teleoperation technologies for control of space robots

    Get PDF
    Teleoperated robots require one or more humans to control actuators, mechanisms, and other robot equipment given feedback from onboard sensors. To accomplish this task, the human or humans require some form of control station. Desirable features of such a control station include operation by a single human, comfort, and natural human interfaces (visual, audio, motion, tactile, etc.). These interfaces should work to maximize performance of the human/robot system by streamlining the link between human brain and robot equipment. This paper describes development of a control station testbed with the characteristics described above. Initially, this testbed will be used to control two teleoperated robots. Features of the robots include anthropomorphic mechanisms, slaving to the testbed, and delivery of sensory feedback to the testbed. The testbed will make use of technologies such as helmet mounted displays, voice recognition, and exoskeleton masters. It will allow tor integration and testing of emerging telepresence technologies along with techniques for coping with control link time delays. Systems developed from this testbed could be applied to ground control of space based robots. During man-tended operations, the Space Station Freedom may benefit from ground control of IVA or EVA robots with science or maintenance tasks. Planetary exploration may also find advanced teleoperation systems to be very useful

    Modeling Data-Plane Power Consumption of Future Internet Architectures

    Full text link
    With current efforts to design Future Internet Architectures (FIAs), the evaluation and comparison of different proposals is an interesting research challenge. Previously, metrics such as bandwidth or latency have commonly been used to compare FIAs to IP networks. We suggest the use of power consumption as a metric to compare FIAs. While low power consumption is an important goal in its own right (as lower energy use translates to smaller environmental impact as well as lower operating costs), power consumption can also serve as a proxy for other metrics such as bandwidth and processor load. Lacking power consumption statistics about either commodity FIA routers or widely deployed FIA testbeds, we propose models for power consumption of FIA routers. Based on our models, we simulate scenarios for measuring power consumption of content delivery in different FIAs. Specifically, we address two questions: 1) which of the proposed FIA candidates achieves the lowest energy footprint; and 2) which set of design choices yields a power-efficient network architecture? Although the lack of real-world data makes numerous assumptions necessary for our analysis, we explore the uncertainty of our calculations through sensitivity analysis of input parameters

    Addressing Queuing Bottlenecks at High Speeds

    Get PDF
    Modern routers and switch fabrics can have hundreds of input and output ports running at up to 10 Gb/s; 40 Gb/s systems are starting to appear. At these rates, the performance of the buffering and queuing subsystem becomes a significant bottleneck. In high performance routers with more than a few queues, packet buffering is typically implemented using DRAM for data storage and a combination of off-chip and on-chip SRAM for storing the linked-list nodes and packet length, and the queue headers, respectively. This paper focuses on the performance bottlenecks associated with the use of off-chip SRAM. We show how the combination of implicit buffer pointers and multi-buffer list nodes can dramatically reduce the impact of buffering and queuing subsystem on queuing performance. We also show how combining it with coarse-grained scheduling can improve the performance of fair queuing algorithms, while also reducing the amount of off-chip memory and bandwidth needed. These techniques can reduce the amount of SRAM needed to hold the list nodes by a factor of 10 at the cost of about 10% wastage of the DRAM space, assuming an aggregation degree of 16
    corecore