7 research outputs found

    Memory Management for Union-Find Algorithms

    Get PDF
    We provide a general tool to improve the real time performance of a broad class of Union-Find algorithms. This is done by minimizing the random access memory that is used and thus to avoid the well-known von~Neumann bottleneck of synchronizing CPU and memory. A main application to image segmentation algorithms is demonstrated where the real time performance is drastically improved

    Specifying Characteristics of Digital Filters with FilterPro

    Get PDF

    Weak-Order Extensions of an Order

    Get PDF
    In this paper, at first we describe a graph representing all the weak-order extensions of a partially ordered set and an algorithm generating them. Then we present a graph representing all of the minimal weak-order extensions of a partially ordered set, and implying a generation algorithm. Finally, we prove that the number of weak-order extensions of a partially ordered set is a comparability invariant, whereas the number of minimal weak-order extensions of a partially ordered set is not a comparability invariant

    Optimizing Enterprise-Scale OWL 2 RL Reasoning in a Relational Database System

    Full text link
    Abstract. OWL 2 RL was standardized as a less expressive but scalable subset of OWL 2 that allows a forward-chaining implementation. However, building an enterprise-scale forward-chaining based inference engine that can 1) take ad-vantage of modern multi-core computer architectures, and 2) efficiently update inference for additions remains a challenge. In this paper, we present an OWL 2 RL inference engine implemented inside the Oracle database system, using novel techniques for parallel processing that can readily scale on multi-core ma-chines and clusters. Additionally, we have added support for efficient incremen-tal maintenance of the inferred graph after triple additions. Finally, to handle the increasing number of owl:sameAs relationships present in Semantic Web data-sets, we have provided a hybrid in-memory/disk based approach to efficiently compute compact equivalence closures. We have done extensive testing to eva-luate these new techniques; the test results demonstrate that our inference en-gine is capable of performing efficient inference over ontologies with billions of triples using a modest hardware configuration.

    Hardware dedicado para sistemas empotrados de visión

    Get PDF
    La constante evolución de las Tecnologías de la Información y las Comunicaciones no solo ha permitido que más de la mitad de la población mundial esté actualmente interconectada a través de Internet, sino que ha sido el caldo de cultivo en el que han surgido nuevos paradigmas, como el ‘Internet de las cosas’ (IoT) o la ‘Inteligencia ambiental’ (AmI), que plantean la necesidad de interconectar objetos con distintas funcionalidades para lograr un entorno digital, sensible y adaptativo, que proporcione servicios de muy distinta índole a sus usuarios. La consecución de este entorno requiere el desarrollo de dispositivos electrónicos de bajo coste que, con tamaño y peso reducido, sean capaces de interactuar con el medio que los rodea, operar con máxima autonomía y proporcionar un elevado nivel de inteligencia. La funcionalidad de muchos de estos dispositivos incluirá la capacidad para adquirir, procesar y transmitir imágenes, extrayendo, interpretando o modificando la información visual que resulte de interés para una determinada aplicación. En el marco de este desafío surge la presente Tesis Doctoral, cuyo eje central es el desarrollo de hardware dedicado para la implementación de algoritmos de procesamiento de imágenes y secuencias de vídeo usados en sistemas empotrados de visión. El trabajo persigue una doble finalidad. Por una parte, la búsqueda de soluciones que, por sus prestaciones y rendimiento, puedan ser incorporadas en sistemas que satisfagan las estrictas exigencias de funcionalidad, tamaño, consumo de energía y velocidad de operación demandadas por las nuevas aplicaciones. Por otra, el diseño de una serie de bloques funcionales implementados como módulos de propiedad intelectual, que permitan aliviar la carga computacional de las unidades de procesado de los sistemas en los que se integren. En la Tesis se proponen soluciones específicas para la implementación de dos tipos de operaciones habitualmente presentes en muchos sistemas de visión artificial: la sustracción de fondo y el etiquetado de componentes conexos. Las distintas alternativas surgen como consecuencia de aplicar una adecuada relación de compromiso entre funcionalidad y coste, entendiendo este último criterio en términos de recursos de cómputo, velocidad de operación y potencia consumida, lo que permite cubrir un amplio espectro de aplicaciones. En algunas de las soluciones propuestas se han utilizado además, técnicas de inferencia basadas en Lógica Difusa con idea de mejorar la calidad de los sistemas de visión resultantes. Para la realización de los diferentes bloques funcionales se ha seguido una metodología de diseño basada en modelos, que ha permitido la realización de todo el ciclo de desarrollo en un único entorno de trabajo. Dicho entorno combina herramientas informáticas que facilitan las etapas de codificación algorítmica, diseño de circuitos, implementación física y verificación funcional y temporal de las distintas alternativas, acelerando con ello todas las fases del flujo de diseño y posibilitando una exploración más eficiente del espacio de posibles soluciones. Asimismo, con el objetivo de demostrar la funcionalidad de las distintas aportaciones de esta Tesis Doctoral, algunas de las soluciones propuestas han sido integradas en sistemas de vídeo reales, que emplean buses estándares de uso común. Los dispositivos seleccionados para llevar a cabo estos demostradores han sido FPGAs y SoPCs de Xilinx, ya que sus excelentes propiedades para el prototipado y la construcción de sistemas que combinan componentes software y hardware, los convierten en candidatos ideales para dar soporte a la implementación de este tipo de sistemas.The continuous evolution of the Information and Communication Technologies (ICT), not only has allowed more than half of the global population to be currently interconnected through Internet, but it has also been the breeding ground for new paradigms such as Internet of Things (ioT) or Ambient Intelligence (AmI). These paradigms expose the need of interconnecting elements with different functionalities in order to achieve a digital, sensitive, adaptive and responsive environment that provides services of distinct nature to the users. The development of low cost devices, with small size, light weight and a high level of autonomy, processing power and ability for interaction is required to obtain this environment. Attending to this last feature, many of these devices will include the capacity to acquire, process and transmit images, extracting, interpreting and modifying the visual information that could be of interest for a certain application. This PhD Thesis, focused on the development of dedicated hardware for the implementation of image and video processing algorithms used in embedded systems, attempts to response to this challenge. The work has a two-fold purpose: on one hand, the search of solutions that, for its performance and properties, could be integrated on systems with strict requirements of functionality, size, power consumption and speed of operation; on the other hand, the design of a set of blocks that, packaged and implemented as IP-modules, allow to alleviate the computational load of the processing units of the systems where they could be integrated. In this Thesis, specific solutions for the implementation of two kinds of usual operations in many computer vision systems are provided. These operations are background subtraction and connected component labelling. Different solutions are created as the result of applying a good performance/cost trade-off (approaching this last criteria in terms of area, speed and consumed power), able to cover a wide range of applications. Inference techniques based on Fuzzy Logic have been applied to some of the proposed solutions in order to improve the quality of the resulting systems. To obtain the mentioned solutions, a model based-design methodology has been applied. This fact has allowed us to carry out all the design flow from a single work environment. That environment combines CAD tools that facilitate the stages of code programming, circuit design, physical implementation and functional and temporal verification of the different algorithms, thus accelerating the overall processes and making it possible to explore the space of solutions. Moreover, aiming to demonstrate the functionality of this PhD Thesis’s contributions, some of the proposed solutions have been integrated on real video systems that employ common and standard buses. The devices selected to perform these demonstrators have been FPGA and SoPCs (manufactured by Xilinx) since, due to their excellent properties for prototyping and creating systems that combine software and hardware components, they are ideal to develop these applications

    Modélisation, Analyse, Représentation des Images Numériques Approche combinatoire de l’imagerie

    Get PDF
    My research are focused on combinatorial image processing. My approach is to propose mathematical models to abstract physical reality. This abstraction allows to define new techniques leading to original solutions for some problems. In this context, I propose a topological model of image, regions segmentation based on statistical criteria and combinatorial algorithms, and a bound representation based on combinatorial maps.Mes travaux de recherche sont basés sur une approche combinatoire et discrète de l’imagerie. Ma démarche est de proposer des définitions de modèles mathématiques fournissant une abstraction de la réalité physique, cette abstraction permettant de définir des nouvelles techniques amenant des solutions originales à des problèmes posés. Dans ce cadre, je me suis plus particulièrement intéressé à la définition d’un modèle formel d’image, à la segmentation en régions par des techniques algorithmiques et statistiques, et à la structuration du résultat à l’aide d’une représentation combinatoire
    corecore