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Two Strategies to Speed up Connected

Component Labeling Algorithms
Kesheng Wu, Ekow Otoo, Kenji Suzuki,

Abstract— This paper presents two new strategies

to speed up connected component labeling algo-

rithms. The first strategy employs a decision tree

to minimize the work performed in the scanning

phase of connected component labeling algorithms.

The second strategy uses a simplified union-find data

structure to represent the equivalence information

among the labels. For 8-connected components in a

two-dimensional (2D) image, the first strategy reduces

the number of neighboring pixels visited from 4 to

7/3 on average. In various tests, using a decision tree

decreases the scanning time by a factor of about

2. The second strategy uses a compact representa-

tion of the union-find data structure. This strategy

significantly speeds up the labeling algorithms. We

prove analytically that a labeling algorithm with our

simplified union-find structure has the same optimal

theoretical time complexity as do the best labeling

algorithms. By extensive experimental measurements,

we confirm the expected performance characteristics

of the new labeling algorithms and demonstrate

that they are faster than other optimal labeling

algorithms.

Index Terms— Connected component labeling, op-

timization, union-find algorithm, decision tree, equiv-

alence relation.

I. INTRODUCTION

Connected component labeling is a procedure for

assigning a unique label to each object (a group of

connected components) in an image [1], [2], [3],

[4]. These labels are the keys for any subsequent

analysis procedure and are used for distinguishing

and referencing the objects. This makes connected

component labeling an indispensable part of nearly

all applications in pattern recognition and computer

vision. For example, before a computer can detect

or classify any object in an image, be it a car,

a person, or a lesion, groups of similar pixels
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are identified and labeled. Each group is generally

referred to as an object. Identifying all pixels in a

group enables one to compute the information re-

quired for subsequent processing, such as area size,

height, width, and perimeter. Clearly, connected

component labeling is one of the most fundamental

algorithms of image analysis. In many cases, it is

also one of the most time-consuming tasks among

other pattern-recognition algorithms [5]. For these

reasons, connected component labeling continues

to remain an active area of research. Some recent

work is included in references [6], [7], [8], [9],

[10], and [11]. This paper presents two strategies

that significantly speed up the commonly used

algorithms for connected component labeling.

To illustrate the new optimization strategies, we

consider the problem of labeling binary images

stored in 2-dimensional (2D) arrays. These im-

ages are typically the output from another image-

processing step, such as segmentation [12], [13],

[14]. Each pixel in a binary image is called either

an object pixel or a background pixel. The con-

nected component labeling problem is to assign a

label to each object pixel so that connected (or

neighboring) object pixels have the same label.

There are two common ways of defining connect-

edness in a 2D image, i.e., 4-connectedness and

8-connectedness [15]. In this paper, we use the 8-

connectedness as illustrated in Fig. 1(a).

There are a number of different approaches to

labeling the connected components. The simplest

approach repeatedly scans the image to determine

appropriate labeling until no further changes can be

made to the assigned labels [3]. A label assigned

to an object pixel is called a provisional label

before the final assignment. For a 2D image, a

forward scan assigns labels to pixels from left to

right and top to bottom. A backward scan assigns

labels to pixels from right to left and bottom to

top. Each time a pixel is scanned, its neighbors

in the scan mask, as illustrated in Figs. 1(b) and

(c), are examined for determining an appropriate
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label to be assigned to the current pixel. If there

is no object pixel in the scan mask, the current

pixel receives a new provisional label. On the

other hand, if there are any object pixels in the

scan mask, the provisional labels of the neighbors

are considered equivalent, a representative label is

selected to represent all equivalent labels, and the

current object pixel is assigned this representative

label. One simple strategy for selecting a represen-

tative is to use the smallest label. A more sophis-

ticated labeling approach may have a separate data

structure for storing the equivalence information

or a different strategy to select a representative

of the equivalent labels. Based on these and other

features, labeling algorithms can be grouped into

five different categories.

1) Multi-pass algorithms ([1], [4], [11], [16],

[15]): The basic labeling algorithm described

above is the best known example of this

group. An obvious short-coming of this al-

gorithm is that the number of scans can be

large. To control the number of iterations,

one may alternate the direction of scans or

directly manipulate the equivalence informa-

tion. A recent example of such an algorithm

was given by Suzuki et al. [11]. It performs

sequential scans, and uses a label connection

table to reduce the number of scans. In most

tests, this algorithm uses no more than four

scans, which is less than used by others in

this group. In later discussion, we refer to this

algorithm as Scan plus Connection Table, or

SCT.

2) Two-pass algorithms ([8], [17], [18], [19],

[20], [21]): Many algorithms in this group

operate in three distinct phases.

a) Scanning phase: In this phase, the im-

age is scanned once to assign provi-

sional labels to all object pixels, and

to record the equivalence information

about the provisional labels.

b) Analysis phase: This phase analyzes the

label equivalence information to deter-

mine the final label of each provisional

label.

c) Labeling phase: This third phase as-

signs the final labels to the object pixels

by doing a second pass through the

image.

Depending on the data structure used for

representing the equivalence information, the

analysis phase may be integrated into the

other two. One of the most efficient data

structures for representing the equivalence

information is the union-find data structure

[17], [8]. Because the operations on the

union-find data structure are very simple,

one would expect the analysis phase and the

labeling phase to take less time than the scan-

ning phase. Because a multi-pass algorithm

typically repeats the scanning phase multiple

times, one would expect a two-pass algorithm

to be faster than a multi-pass algorithm. In-

deed, there are a number of two-pass algo-

rithms that not only perform well in practice,

but also have a theoretical worst-case time

complexity O(p), where p is the number of

pixels in the image. Given an image in a 2D

array, any labeling algorithm must visit every

pixel at the minimum. Thus, O(p) complexity

is theoretically optimal. In this paper, we use

one such optimal algorithm by Fiorio and

Gustedt [8] as the representative of this group.

Because the equivalence label information is

stored in a union-find data structure, we refer

to this algorithm as Scan plus Union-Find, or

SUF.

3) One-pass algorithms ([1], [7], [15]): An al-

gorithm in this group scans the image to find

an unlabeled object pixel and then assigns the

same label to all connected object pixels. The

most efficient algorithm in this group is the

Contour Tracing (CT) algorithm by Chang et

al. [7]. Algorithms in this group need to go

through the image only once, typically with

an irregular access pattern. For example, each

time an unlabeled object pixel is found, the

CT algorithm follows the boundary of the

connected component until it returns to the

starting position. It then fills in the labels

for the object pixels in the interior of the

component.

4) Algorithms for hierarchical image formats

([17], [22], [23], [24], [25]): There are many

labeling algorithms that are designed for

more complex image formats than the simple

2D array. Most of these algorithms are built

on the algorithms from groups 1 and 2. This

paper aims to improve the basic building

blocks of algorithms from groups 1 and 2,

which indirectly benefits algorithms in this

group.
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5) Parallel algorithms ([5], [26], [27], [16], [9],

[10]): Because connected component labeling

is considered a bottleneck in many image

analysis applications, a large number of par-

allel algorithms have been developed. Most

of them utilize the basic steps used in the

first two groups. Our optimization strategies

should benefit these algorithms as well.

In general, one expects a one-pass algorithm to

be faster than a two-pass algorithm and a two-pass

algorithm in turn to be faster than a multi-pass

algorithm. However, this is not always the case, as

has been reported [11]. One reason that, in practice,

a multi-pass algorithm like SCT could be faster than

a two-pass algorithm is that SCT performs only

sequential and local memory accesses, whereas, a

two-pass algorithm needs random memory accesses

to maintain and update the union-find data struc-

ture. The sequential memory accesses are much

better supported on most modern computers than

are random memory accesses. In fact, in the past

few years, the CPU clock rate has been increasing

significantly faster than that of the speed of memory

accesses. This makes random memory accesses

relatively more expensive than before. Based on

this observation, our optimization strategies seek to

minimize the number of random memory accesses.

By combining the optimization strategies, we aim

at producing a two-pass algorithm that is more

efficient than the fastest known algorithm from the

first three groups [7].

Our first optimization strategy minimizes the

number of neighbors visited during a scan and

therefore reduces the number of memory accesses.

A straightforward scanning procedure examines the

four neighbors a, b, c, and d in turn [2], [3]. With

our optimization, if b is an object pixel, the other

three pixels are not examined. A decision tree is

used for deciding which neighbors to examine if b

is a background pixel. This optimization strategy

has the potential of reducing the amount of work

during a scan by up to a factor of four. In Suzuki

et al. [11], the authors pointed out a way to reduce

the amount of work that is more suitable for a

hardware implementation. Our strategy is intended

for a software implementation.

Our second optimization strategy simplifies the

data structure and the algorithms used to solve the

union-find problem. A considerable amount of work

has been done on union-find [28], [29], [30], [17],

[31], [32]. Because union-find involves relatively

simple operations, the time spent on union-find

is expected to be a small fraction of a two-pass

algorithm. However, this is not the case (see, for

example, ref. [31]), which has motivated a number

of research efforts [31], [33], [34], [35]. Our new

algorithms for union-find are based on an array data

structure [30]. Because this data structure requires

less computer memory than do commonly used

ones and because the new algorithms access the

memory in a more regular manner, using our union-

find data structure and algorithms significantly re-

duces the overall time for connected component

labeling. More specifically, with a common union-

find solution, the Contour Tracing algorithm was

shown to outperform the SUF algorithm [7]. How-

ever, our new Scan plus Array-based Union-Find

(SAUF) algorithm is usually faster than the same

Contour Tracing algorithm1.

The remainder of this paper is divided into five

sections. The next section describes the decision

tree used for minimizing the number of neigh-

bors visited during a scan. Sections III contains

the description of the new union-find solution. In

Section IV, we analyze the correctness of the two

optimization strategies, and prove the worst-case

time complexity of the new labeling algorithm

that employs the two strategies. In addition, we

derive a performance model for the expected time

needed by the new algorithm to label random binary

images. In Section V, we present timing results that

confirm the improvement in performance of the

two optimization strategies through extensive set

of experiments. The timing results also verify the

performance model for the new labeling algorithm

on random images. A summary and discussion on

future work are given in Section VI.

II. MINIMIZING THE COST OF SCANNING

OPERATIONS

In this section, we describe a decision tree used

for minimizing the work required in the scanning

phase used by most connected component labeling

algorithms. As an example, we apply this optimiza-

tion strategy to the Scan plus Connection Table

(SCT) algorithm of Suzuki et al. [11]. We prove

that a decision tree indeed minimizes the number

1In our tests, we compare against an implementa-

tion of the Contour Tracing algorithm distributed by the

original authors of the algorithm. It is available from

<http://www.iis.sinica.edu.tw/∼fchang/03src.html>.
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Fig. 1. The masks and the neighborhood of pixel e. Notice that all the pixels in the forward and backward scan masks are in

the neighborhood of pixel b.

of neighbors visited during scans later in Section

IV.

A. The basic scanning procedure

Given a 2D image stored in a 2D array, the

simplest scanning procedure for performing con-

nected component labeling is to visit each pixel

in turn, and assign a label to each object pixel

that is either a label of its neighbors’ or a new

distinct label if its neighbors are all background

pixels. Let I denote the 2D array for an image.

Let I[i, j] = 0 denote a background pixel, and

let I[i, j] = 1 denote an object pixel. We use an

array L with the same size and shape as I for

storing the labels. In our implementation of the

labeling algorithms, we use one array to hold both

I and L. However, for clarity, we will continue to

describe them as two separate arrays. The problem

of connected component labeling is to fill the array

L with (integer) labels so that the neighboring

object pixels have the same label. Note that we have

made an arbitrary choice of denoting a background

pixel by 0 and an object pixel by 1; however, there

are other equally valid choices [11]. For simplicity,

we have also chosen to use integer labels, but it

is possible to use different types of labels as well.

We name the pixel in the scan mask as illustrated

in Fig. 1 as a, b, c, d and e and also use the

same letters in place of their (i, j) coordinates in

the following discussion. With this notation, L[e]
denotes the label of the current pixel being scanned,

and I[b] denotes the pixel value of the neighbor

directly above e in the vertical direction. Let l be

an integer variable initialized to 1. The assignment

of a provisional label for e during the first scan can

be expressed as follows:

L[e]←























0, I[e] = 0,

l, (l← l + 1), ∀i ∈ (a,b, c,d),

I[i] = 0,

min
i∈(a,b,c,d)|I(i)=1

(L[i]), otherwise.

(1)

The above expression means that L[e] is assigned

0 if I[e] = 0. It is assigned a new label l, and l is

increased by 1, if a,b, c, and d in the scan mask are

all background pixels. Otherwise, it is assigned the

minimum of the provisional labels already assigned

to the scan mask. In later scans, the labels for the

object pixels are modified to be the minimum labels

of their neighboring object pixels, as described by

the following expression (which is the last case of

Equation (1)):

L[e]← min
i∈(a,b,c,d)|I[i]=1

(L[i]),

if I[e] = 1, and ∃i ∈ (a,b, c,d)

such that I[i] = 1.

(2)

The above formulas can be used for both forward

scan and backward scan. In principle, we can apply

them to any type of scan on any image format. In

a multi-pass algorithm, this basic scanning proce-

dure is repeated until the label array L no longer

changes. After the first scan, the labels may change

because pixels in one connected component could

have been assigned multiple labels. We say that

these labels are equivalent, and we have chosen

arbitrarily to use the smallest label as the repre-

sentative of the equivalent labels. As labels are

discovered to be equivalent during a scan, the pixels

not yet scanned will take on the smaller label.

However, pixels already scanned during this pass

will not change. In general, many scans are required

for converting all equivalent labels to the smallest

one. One successful strategy used for reducing the

number of scans is the use a label connection table

[11], which we briefly describe next.
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B. Scan plus connection table

The connection table proposed by Suzuki et

al. [11] is a one-dimensional (1D) array that has as

many elements as the number of provisional labels.

Let T denote this connection table. In the first scan,

the arrays L and T are updated as follows:

L[e]←































































If I[e] = 0,

0,

if ∀i ∈ (a,b, c,d), I[i] = 0,

l, T [l]← l, l← l + 1,

otherwise,

min
i∈(a,b,c,d)|I[i]=1

(T [L[i]]) ,

∀i ∈ (a,b, c,d) | I[i] = 1,

T [L[i]]← L[e]

(3)

In the subsequent scans, we only update the

labels of object pixels that have other object pixels

in their scan masks. The formula for updating L
and T is as follows (which are equivalent to the

last case in Equation (3)):

L[e]← min
i∈(a,b,c,d)|I[i]=1

(T [L[i]]),

∀i ∈ (a,b, c,d) | I[i] = 1, T [L[i]]← L[e],

if I[e] = 1, and ∃i ∈ (a,b, c,d),

such that I[i] = 1.

(4)

Because the connection table passes the label

equivalence information to all the pixels with the

same provisional labels, the labels can propagate

much faster than in similar algorithms. In many

tests, SCT usually required no more than 4 scans

[11].

The above formulae indicate that all four neigh-

bors in the scan masks need to be visited. In

later discussion, we refer to this basic version of

SCT as SCT-4 because it always visits the four

neighbors. In the paper that proposed SCT [11],

the authors also suggested an optimization in the

appendix. Their optimization reduced the number

of neighbors visited from 4 to 2 in many cases. In

later discussion, we refer to this improved version

as SCT-2. The decision trees to be described next

are another step in this optimization process. They

can further reduce the number of neighbors visited.

C. Decision tree

In Fig. 2(a), it is clear that all the neighbors in the

scan masks are neighbors of b. If there is enough

equivalence information for accessing the up-to-

date label of b, then there is no need to examine the

rest of the neighbors. Based on this observation, we

present a set of decision trees that each organizes

the scan operation in a specific order as illustrated

in Fig. 2. Two equivalent trees are shown. We can

produce two more equivalent trees by swapping the

labels a and d. Because they are equivalent, one

may use any one of the four. Throughout this paper,

the decision tree of Fig. 2(b) is assumed.

A decision tree is invoked to handle the case

when the current pixel is an object pixel. In the

first scan pass, if all neighbors in the scan mask

are background pixels, a new label is generated.

In subsequent scans, this branch of the decision

tree performs no operation. All other branches of

the decision tree deal with the case where some

neighbors in the scan mask are object pixels. By

using this detailed decision process, we minimize

the number of neighbors visited during the scans.

The decision trees presented in Fig. 2 need three

functions. They are defined as follows (using the

same arrays L and T defined previously):

1) The one-argument copy function, copy(a),

contains one statement:

L[e]← T [L[a]]. (5)

2) The two-argument copy function, copy(c, a),

contains three statements:

L[e]←min(T [L[c]], T [L[a]]),

T [L[c]]←L[e],

and, T [L[a]]←L[e].

(6)

3) The new label function performs the three

statements below.

L[e]← l, T [l]← l, and l← l + 1. (7)

The statements of Equation (7) exactly repli-

cate the second case in Equation (3).

It is clear that a scanning procedure follow-

ing a decision tree will do less work than using

either of the straightforward scans suggested by

Equations (3) and (4). The use of a decision tree

minimizes the number of neighbors visited for

determining a label for pixel e. It is much easier to

formalize this observation once we have explained

the concept of union-find. For this reason, we will

not give a formal analysis of the decision trees until

Section IV, after the union-find data structure is

explained. In the following discussion, we call the

SCT algorithm that employs a decision tree SCT-1.
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Fig. 2. The decision trees used in scanning for 8-connected neighbors.

III. SIMPLIFYING UNION-FIND

The connection table used in the previous section

is one way of controlling the number of scans

required for labeling the connected components.

Another way of reducing the number of scans is

to use the union-find data structure, which results

in two-pass algorithms for connected component

labeling [17], [8], [33], [36]. These two-pass al-

gorithms are typically executed in three phases.

A scanning phase for examining the image and

assigning provisional labels to object pixels. This

phase also fills the union-find data structure and

records the label equivalence information. The sec-

ond phase, called the analysis phase, flattens the

union-find data structure so that the final labels are

easily accessible. The last phase, called the labeling

phase, assigns the final label to every object pixel.

Using union-find in connected component la-

beling has been well studied in [17], [8], [33],

[34]. Because the algorithms used for maintaining

and manipulating the union-find data structure are

very simple, one may expect that these operations

take a negligible amount of time compared with

the scanning phase. However, this is not the case

in practice. For example, two recent publications

by two separate groups have shown that the two-

pass algorithms are not as efficient as expected [7],

[11]. One of the main reasons for this performance

problem is that most union-find algorithms perform

a large number of random memory accesses [31].

To minimize random memory accesses, we present

a simple variant of the union-find data structure in

this section. In later sections, we analyze our union-

find approach and measure its impact on two-pass

connected component labeling.

A. Union-find

A union-find data structure can be viewed con-

ceptually as rooted trees, where each node of a tree

is a provisional label and each edge represents an

equivalence between two labels [36]. It is easy to

see that all labels in a tree are equivalent. The label

associated with the root of a tree is usually chosen

as the final label for all provisional labels in the

tree. We will refer to the union-find data structure

and the associated algorithms simply as the union-

find in the future.

There are only three operations on a union-find

data structure:

• make a new tree of a single node,

• find the root of a given node, and

• unite two trees.

The second and third operations are commonly

referred to as find and union, respectively, hence the

name union-find. The find operation starts from a

node and follows the edges until it reaches the root

of the tree. This operation returns the root label.

The union operation adds an edge from the root of

one tree to the root of another. The input arguments

to a union operation can be two arbitrary nodes.

Two find operations are needed for finding the root

nodes of their respective trees before the roots can

be connected. In general, the main cost of a union

operation is for the two find operations. Therefore,

an efficient find algorithm is critical to the overall

efficiency of union-find operations.

A natural way of representing rooted trees in

software is to use pointers. In most cases, nodes of

a pointer-based rooted tree are scattered randomly

by the memory management system of a computer.

A find operation would have to follow the pointers

to the root and thus would traverse the memory in

an unpredictable manner. This operation is typically

slow.

A number of authors have suggested storing these

rooted trees in arrays, because an array resides in

consecutive memory locations [37], [30], [4]. Fig. 3

shows an example of such an array. Usually, the

complexity of a union-find problem is defined as
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provisional labels 0 1 2 3 4 5

content of array P

before union(1, 3) 0 1 1 3 3 3

after union(1, 3) 0 1 1 1 3 3

2

Find(e) = d

union(1, 3)0 1

2 4

3

5

0 1

3

4 5

Fig. 3. An array representation of the rooted trees.

the cost of an arbitrary combination of m union

and find operations on a union-find data structure

with n nodes. Because each operation touches at

least one node, the time complexity of m operations

cannot be less than O(m). We say that a union-

find is linear if it has O(m) time complexity.

We also consider such an approach to be optimal.

A naive approach may require O(mn) time. Two

types of optimization techniques are commonly

used to speed up the naive approach for union

and find operations: path compression [38] and

weighted union [36], [34]. In the worst case, all

known union-find approaches require a superlinear

time to perform m union and find operations [39],

[35]. However, under some restricted settings [32],

[40] or some inputs [30], [41], [42], m union

and find operations may take a linear time. These

approaches are generally cumbersome to implement

with arrays.

Our proposed approach is based on two obser-

vations. First, using a single array, we can effi-

ciently implement the union-find algorithms with

path compression. Second, the union-find algo-

rithms with only path compression (i.e., without

weighted union) can also achieve the linear time

complexity on average under certain conditions

[30], [41]. Based on these observations, we expect

our simple union-find approach to perform quite

well. In fact, we can prove that our union-find

approach takes a linear time (even in the worst

case) to perform any m union and find operations in

the connected component labeling algorithms. This

enables the overall time complexity of a labeling

algorithm to be linear in the number of pixels p,

which is optimal for any labeling algorithm that

takes a 2D array as input [7], [8], [11], [17].

B. Simplified algorithms

Following an example in the literature [30], [4],

we call the array that contains the equivalence

information the P array (short for parent links).

Array P can be filled in a way similar to that of

the connection table T introduced in Section II-B.

In particular, every time a new provisional label

is generated, array P is extended by one element

by use of assignment statement P [l] ← l. This

operation adds a new single-node tree to the union-

find trees. In other cases, a reference to T[i] needs

to be replaced by either a find or a union operation.

Next, we describe these two operations by using

pseudo-codes. Our implementations, however, are

in C++ with extensive use of C++’s Standard Tem-

plate Library (STL)2. The two basic operations for

finding the root of a tree and changing all nodes

on a path to point to a new root are defined as

findRoot and setRoot.

Function findRoot(P, i)

findRoot(P, i)

Input: An array P and a node i.

Output: The root node of tree of node i.

// Find the root of the tree of node i.

begin

root ⇐ i ;

while P[root] < root do root ⇐ P[root]

;

return root ;

end

Procedure setRoot(P, i, root)

setRoot(P, i, root)

InOut: An array P.

Input: A node i of the tree.

Input: The root node of the tree of node i.

// Make all nodes in the path of node i point

to root.

begin

while P[i] < i do

j ⇐ P[i] ; P[i] ⇐ root ; i ⇐ j ;

end

P[i] ⇐ root ;

end

2In C++ convention, all indices to arrays start from 0. The

word array or vector in all pseudo-code segments is a short-

hand of C++ STL type std::vector<unsigned>.
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With the function findRoot and procedure

setRoot, we can easily define the functions for

union and find operations. We note that these two

functions are iterative rather than recursive as is

typical in a pointer-based union-find definitions

On most computer systems, the iterative functions

can execute more efficiently than the equivalent

recursive functions. In the function findRoot, the

variable root takes on a sequence of values. This

sequence forms a path from the starting node i to

the root of the tree. This path is known as a find

path. The procedure setRoot changes all nodes

on the find path to point directly to the specified

new root. This operation is the path compression.

Function find(P, i)

find(P, i)

InOut: An array P.

Input: A node i of tree of node i.

Output: The root node of tree of node i.

// Find the root of the tree of node i

// and compress the path in the process.

begin

root ⇐ findRoot(P, i) ;

setRoot(P, i, root) ;

return root ;

end

Function union(P, i, j)

union(P, i, j)

InOut: An array P.

Input: Two nodes i and j.

Output: The root of the united tree

. // Unite the two trees containing nodes i and j

// and return the new root.

begin

root ⇐ findRoot(P, i) ;

if i 6= j then

rootj ⇐ findRoot(P, j) ;

if root > rootj then root ⇐ rootj; ;

setRoot(P, j, root); ;

end

setRoot(P, i, root) ;

return root ;

end

With functions find and union, Equation (3)

can be redefined as follows:

L[e]←































































If I[e] = 0,

0,

if ∀i ∈ (a,b, c,d), I[i] = 0,

l, P [l]← l, l← l + 1;

otherwise,

min
i∈(a,b,c,d)|I[i]=1

(findRoot(P, L[i])) ,

∀i ∈ (a,b, c,d) | I[i] = 1,

setRoot(P, L[i], L[e]).
(8)

To use a decision tree as shown in Fig. 2, we

need to define three functions used at the leaf nodes.

We note that the new label function is the second

case in the above equation and the one-argument

copy function, copy(a), previously defined by Equa-

tion (5), is simplified to be

L[e]← L[a]. (9)

The third function, the two-argument copy function

copy(c, a) defined by Equation (6), can be redefined

as

L[e]← union(P, L[c], L[a]). (10)

The above union function always selects the root

with the smaller label as the root of the combined

tree. This leads to the fact that the parent of a

node always has a smaller label than its own label

(i.e., P[i] ≤ i), and the root of a tree always has

the smallest label in the tree. This has two impor-

tant consequences: the memory access pattern in

findRoot and setRoot is more predictable than

using other union strategies, and we can produce

consecutive final labels efficiently by using the

procedure flattenL.

∀i, j, L[i, j]← P [L[i, j]]. (11)

Note that after the procedure flattenL is

invoked, the array P no longer describes union-find

trees. It can be used only to assign the final labels

using Equation (11). It is easy to see that the final

labels are consecutive, as shown in the next section.

If there is no need for consecutive labels, one

may use the procedure flatten instead of the

procedure flattenL. It is easy to see that proce-

dure flatten is cheaper than flattenL.

After invoking the flatten procedure, one can

use Equation (11) to assign the final labels as well.

The result of calling the flatten procedure is that

every node of union-find trees points to its root. One
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Procedure flattenL(P, size)

flattenL(P, size)

InOut: An array P.

Input: The size size of the array P.

// Flatten the Union-Find tree and

// relabel the components.

begin

k ⇐ 1 ;

for i ⇐ 1 to size-1 do

if P[i] < i then

P[i] ⇐ P[P[i]] ;

else

P[i] ⇐ k ; k ⇐ k + 1 ;

end

end

end

Procedure flatten(P, size)

flatten(P, size)

InOut: A parent array P

Input: The size size of the array P

// Flatten the Union-Find tree

begin

for i ⇐ 1 to size-1 do P[i] ⇐ P[P[i]] ;

end

important characteristics of both flatten and

flattenL is that their computation complexities

are not affected by the actual content of the array

P. No matter how the union-find trees are shaped,

the costs of both flatten and flattenL are

the same. This may not be the case if the flattening

procedure were implemented as a series of calls to

the function find. We can employ these simpler

flattening procedures because we have used a spe-

cial union rule.

IV. ANALYSES

We now present some analyses to show the cor-

rectness of our proposed algorithms and their worst-

case time complexities. One of the main results of

our analyses is that any two-pass algorithm using

the path compression in union-find has the worst-

case time complexity of O(p). There is no need

to flatten the union-find trees immediately after

scanning each row as recommended in [8].

A. Correctness of algorithms

The main results of this section are stated in

the form of lemmas and theorems. The first three

lemmas concern the union-find algorithms. Their

proofs do not require explicit details of the scanning

procedure. For completeness, one can assume that

Equation (8) is used for defining the scanning

procedure. We show that the use of a decision

tree achieves the same result as checking all four

neighbors. Further, we show that the use of a

decision tree minimizes the number of neighbors

visited during a scan.

Lemma 1: The array P produced by the simpli-

fied union and find algorithms satisfies P[i] ≤ i, ∀
i.

Proof: Each element of the array P [i] is ini-

tialized to i. During both union and find procedures,

the value of P [i] never increases. Therefore, the

lemma is true.

Lemma 2: The procedure flatten changes

each node to point directly to the root of the tree

containing it.

Proof: Following the previous lemma, it is

straightforward to prove this by induction.

The procedure flatten can be used to produce

final labels for the components. However, the labels

may be discontinuous. For example, the array P

may contain 0, 1, 2, and 4, but not 3. In many ap-

plications, consecutive labels are preferred. In these

cases, one may use the procedure flattenL to

generate consecutive labels. The following lemma

formalizes this property of flattenL.

Lemma 3: Given that there are k connected com-

ponents, the procedure flattenL changes array P

to contain all integers between 0 and k.

Proof: Label 0 is reserved for the background

pixels. If there is one connected component, we

must have P[0] = 0 and P[1] = 1. Clearly, the lemma

is true for k = 1. Further, to prove the lemma by

induction, we assume that it is true for the first i

elements of array P and prove that, after executing

the procedure flattenL for one more iteration,

the lemma is true for P with (i+1) elements. We ob-

serve that the procedure flattenL only changes

one value of P in any iteration and does not go

back to change any values already examined. If

there are (k−1) connected components represented

by the first i elements of P, then P[0:i-1] must

contain the final label already, i.e., P[0] . . . P[i-1]

must contain all integers between 0 and (k − 1).
At the ith iteration, depending on the value of P[i],

the procedure flattenL may perform one of two

possible actions. If P[i] = i, then P[i] is assigned

the value of variable k. In this case, there are
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k components and the content of P [0] . . . P [i] is

between 0 and k. The correctness of the lemma is

maintained. On the other hand, if P[i] < i, then the

content of P[P[i]] must be an integer less than k and

a correct final label for the tree that contains node

P[i] and i. In this case, there are (k−1) components,

and the lemma is also correct. By induction, the

lemma is true for any i.

If the equivalence information is correctly cap-

tured, the above union and find functions can

be used for producing the final labels by the use

of Equation (11). The most straightforward way

of capturing the equivalence information in the

scanning phase is to visit all four neighbors in the

scan mask, as described in Equation (8). Next, we

prove that the use of a decision tree achieves the

same goal.

Lemma 4: Let S0 denote the scanning phase

without a decision tree, and let S1 denote the

scanning phase with a decision tree. A connected

component labeling algorithm using either S0 or S1

produces the same final labels.

Proof: To produce the same final labels, the

scanning phase needs to ensure that each union-find

tree contains all provisional labels assigned to the

pixels that are connected. Because the final labels

are always produced with a flattening of union-find

trees, different scanning procedures must perform

all union operations but could perform different

find operations. We say that two union-find trees

are equivalent if they contain the same provisional

labels. We say that two sets of union-find trees are

equivalent if each tree from one set is equivalent to

exactly one tree from the other set.

To prove that S0 and S1 produce two equiva-

lent sets of union-find trees, we observe that they

produce exactly the same trees after scanning the

first row of an image and the first pixel of the

second row. To generalize this, we assume that

S0 and S1 have produced equivalent sets of trees

up to pixel d in the scan mask and show that,

after a label is assigned to e, the two sets of trees

remain equivalent. To prove this, we show that there

are only two union operations that may possibly

involve two distinct trees; all remaining apparent

union operations performed by S0 are operating

only on a single tree and therefore are actually find

operations.

If pixel b is an object pixel, the provisional labels

assigned to all neighbors of e in the scan mask must

be in one tree. If pixel b is a background pixel,

pixel c may belong to one union-find tree, and a

and d may belong to another tree. The two union

operations that may involve two distinct trees must

involve c and one of a or d. These two cases are

captured by the decision trees as two invocations

of the two-argument copy function. Therefore, the

decision trees correctly capture the equivalence

information. The union-find trees produced by S0

and S1 are equivalent.

Another way to interpret the above lemma is that

a scanning procedure using a decision tree does all

the necessary work. Our intuition is that it actually

does a minimal amount of work. The following

theorem formalizes this intuition.

Theorem 1: The use of a decision tree minimizes

the number of neighbors visited during the scanning

phase of a connected component labeling algorithm.

Proof: From the proof of Lemma 4, we know

that with the use of a decision tree, the potential

union operations are performed. All operations that

are clearly find operations are avoided. To prove

this theorem, we need to show two more facts:

(1) the decision tree visits the minimal number of

neighbors before deciding that a union operation

is required, and (2) the union operations invoked

cannot be replaced with less expensive operations

even if they do not actually unite two trees.

To show the first fact, we observe that the

provisional label of c may belong to a different

union-find tree than those of a and d, only if

b is a background pixel. Therefore, we cannot

avoid visiting b. The decision tree invokes the two-

argument copy function (i.e., the union operation)

only if c and at least one of a and d are object

pixels. To decide whether a union operations is

necessary, one always needs to visit c. The choice

of visiting a first in Fig. 2 is an arbitrary choice;

we could easily find reasons for visiting d first. The

important point is that the decision tree invokes the

union operation as soon as it detects the first object

pixel between a and d. This minimizes the number

of neighbors visited before deciding that a union

operation is required.

A union operations may actually degenerate into

two find operations when the two input nodes

belong to the same union-find tree. We could avoid

these two find operations if we can detect the two

input node belong to the same union-find tree.

However, because detecting this requires exactly

the same two find operations, the work performed

by the union function can not be avoided even if
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the two input nodes belong to the same union-find

tree. Overall, the use of a decision tree minimizes

the amount of work performed during the scanning

phase.

In the previous section, we applied a decision

tree on the Scan with Connection Table (SCT)

algorithm. To see that SCT with a decision tree

(SCT-1) would eventually produce the same labels

as the straightforward SCT-4, we observe that the

connection table T essentially captures the same

information as array P used in our simplified union-

find. The main difference is that SCT relies on

repeated scans to achieve the effect of the path

compression used in the union-find.

This similarity between the connection table and

the union-find trees also suggests that the number of

iterations required by SCT is related to the height of

the union-find trees. However, a rigorous analysis

is complicated by the change of scanning directions

in SCT. We leave that analysis for future work.

B. Worst-case complexity

Fiorio and Gustedt [8] have proved that the

worst-case time complexity of a two-pass algorithm

with the path compression in its union-find is O(p),
where p is an number of pixels in the image. A key

in their approach is that they flatten the union-find

trees after scanning each row of the image. After

each object pixel in a row receives a provisional

label, their algorithm revisits each active label and

applies the find operation with path compression

on the provisional labels. This may add another

pass through the image. Our thesis is that this extra

pass through the image is not necessary. Earlier in

this section, we showed that the find operations

can be skipped without affecting the final labels

and without adding any extra work to the last two

phases of the Scan plus Array-based Union-Find

algorithm. Next, we show that a two-pass algorithm

using any union-find with path compression has

the same O(p) time complexity with or without

flattening the active trees after scanning each row.

Our analysis of the worst-case time complexity

proceeds from the third phase of the two-pass

algorithm to the first phase. It is obvious that the

labeling phase as shown in Equation (11) requires

O(p) time. We next show that the analysis phase

requires O(p) time at most and then prove that the

scanning phase requires O(p) time also.

To be able to give precise expressions for the

cost of some operations, we define the cost of a

find operation to be the number of nodes on the

find path. This definition ensures that the cost of

a find operation is at least one. We define the

cost of a union operation to be the cost of the

two find operations it requires. We use the path

lengths of the united tree to measure the cost of the

find operations. However, it is possible to use find

paths before the union operations as well without

affecting the final cost analysis.

Theorem 2: Given an arbitrary union-find tree

with t nodes, the total cost of executing a find

operation with path compression on each node is

no more than 3t.

Proof: For convenience, let us number the

nodes of the tree from 0 to t − 1 and assign the

root of the tree to be node 0. Let the degree (i.e.,

the number of children) of node i be di. In each

find path, there is a starting node and the root. In

all t find operations, there are t distinct starting

nodes. The root node appears t times as well. In

one case, the root appears also as the starting node.

Altogether, the t find paths include 2t− 1 nodes at

the beginning and the end of the paths. To compute

the total cost, we need to account for the nodes that

appear in the middle of the find paths.

With path compression, node i can appear in the

middle of a find path at most di times. Because the

path compression scheme ensures that all nodes on

a find path point to the root directly, after appearing

in the middle of find path di times, all children of

node i must directly point to the root of the tree.

The total number of nodes that appear in the middle

of t find paths is
∑

di. In any tree with t nodes,
∑

di = t − 1. Because the root is never in the

middle of any find path, the total number of nodes

that appear in the middle of the find paths is actually

less than t − 1. The total cost of t find operations

is no more than 3t− 2 < 3t.

After the scanning phase, the union-find data

structure may contain an arbitrary number of trees.

However, the total number of provisional labels

(i.e., the number of nodes in all trees) is no more

than the number of object pixels, which, in turn,

is no more than the total number of pixels p.

In the most general case, the analysis phase (the

second phase) of a two-pass algorithm performs

a find operation (with path compression) on each

provisional label. The total cost of the analysis

phase then is at most 3p. This proves the following

lemma regarding the computational complexity of

the analysis phase.
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Lemma 5: The worst-case time of the analysis

phase of a two-pass connected component labeling

algorithm using a union-find with pass compression

is O(p), where p is the number of pixels in the

image being labeled.

After flattening of a union-find tree, any subse-

quent find operation costs at most 2. If there is

ever a need to perform multiple iterations of find

operations on each node, the total cost of each

iteration is proportional to the number of nodes in

the trees. The proportionality constant for the first

iteration is about 50% larger than that of subsequent

iterations.

Next, we examine the cost of the scanning phase.

We have shown (see Lemma 4) that using a decision

tree produces the same final labels as using the

straightforward scanning strategy, and the above

lemma indicates that the two strategies do not

change the cost of the analysis phase and the

labeling phase. Therefore, we choose the simple

scanning strategy for the next analysis. This simple

scanning strategy would invoke find operations on

the provisional labels of all object pixels in the scan

mask, perform union operations if necessary, and

assign the label of the root node (of a possibly new

united tree) to pixel e. This procedure is similar to

that defined by Equation (8), but may use different

union rules and different union-find data structures.

Lemma 6: In using the simple forward scan pro-

cedure to assign provisional labels in a two-pass

algorithm, the provisional labels assigned to object

pixels, after scanning a row, are either at the roots

of union-find trees or connected to roots through

provisional labels used in the row.

Proof: After scanning of the first row, each

union-find tree contains a single node. The above

lemma is clearly true. We next examine what

happens while scanning an arbitrary row i. By

construction of the scanning procedure, when a

particular pixel is assigned a provisional label, the

label must be the root of a union-find tree. What we

need to show then is that, as new pixels are assigned

labels, the labels used earlier either remain as roots

or are connected to roots through labels used more

recently. A root of a tree may become non-root

only through union operations. Using the names

given in a scan mask, we can describe such a union

operation as follows. The label assigned to pixel

d was a root of a tree when the assignment was

performed. While a label is determined for pixel e, a

union involving d and c is performed and the root of

the tree containing the label of c becomes the parent

of the label of d. In this case, pixel e is assigned

the label of the root of the newly united tree and

the label of d is a child of the new root. This is

the only mechanism by which a root becomes a

non-root. In this process, the old label becomes a

child of the new label. This process may be repeated

many times, but the earlier labels always connect

to the roots of newly formed trees through other

labels that have been used more recently.

Let the term active labels refer to the provisional

labels assigned to the pixels of a row just scanned.

The above lemma indicates that the active labels

occupy the top of the union-find trees and form a

set of valid union-find trees of their own, which we

call active trees. If we flatten the active trees as

suggested by Fiorio and Gustedt [8], the total cost,

in the worst case, is proportional to the number of

object pixels in the row according to Theorem 2. We

can amortize the cost of this flattening operation to

the object pixels in the last row scanned. This adds

a constant cost of the operation of each object pixel.

Because future scan operations involve only the

active labels, after flattening of the active trees, each

future find operation costs at most 2. Therefore,

the cost of assigning a provisional label and the

cost of a union operation are constants. This proves

the following lemma, which generalizes an earlier

result in [8] by allowing any union-find with path

compression.

Lemma 7: The total cost of a scanning phase

with flattening of active trees after scanning each

row is O(p).

If we do not flatten the active trees, we cannot

account for the costs in the same way. However,

we expect that the total cost of a scanning phase

without the flattening of active trees is no more

than the total cost of a scanning phase with the

flattening of active trees. This is because the process

of flattening the active trees are simply a series

of find operations on the active labels. If we do

not perform these find operations separately, the

procedure of assigning a new label may invoke

them anyway. With the flattening of active trees,

we perform two sets of find operations. Without

the flattening of active trees, we perform only one

set of find operations.

Lemma 8: The total cost of a scanning phase

without flattening of active trees is O(p).

Proof: In the process of assigning a pro-

visional label to the pixel e, it is necessary to
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perform find operations on the labels of a, b, c,

and d. Instead of associating the cost of these find

operations with e, we associate the cost of each

find operation to its starting pixels a, b, c, or d.

This leaves a small constant cost of assigning the

provisional label (and possibly linking two trees)

to be associated with pixel e. While labeling a

2D images, each pixel may be the starting point

of up to 4 find operations. Because these find

operations involve only the active trees, the total

cost of all find operations is at worst proportional to

the number of active labels, which is no more than

the number of object pixels in the row of the image.

Therefore, the total cost of all find operations is at

worst proportional to the number of object pixels.

Accounting for other constant costs per pixel, the

total cost of the scanning phase is O(p).
Theorem 3: The total time required by a two-

pass algorithm using any union-find with path com-

pression is O(p), where p is the number of pixels

in the 2D image.

Proof: A two-path algorithm can be divided

into three phases: scanning, analysis, and labeling.

Lemmas 7 and 8 show that the scanning phase

takes at most O(p) time with or without flattening

of active trees. Lemma 5 shows that the analysis

phase takes O(p) time by the use of a series of

find operations with path compression or one of the

simplified algorithms flatten and flattenL.

The labeling phase, as defined in Equation (11),

obviously takes O(p) time. Overall, the total time

is at worst O(p).

C. Expected performance on random images

Next, we study the expected performance of

the Scan plus Array-based Union-Find (SAUF)

algorithm on random binary images. The random

images considered here contain n rows and m
columns, and each pixel has a probability q of being

an object pixel. We also refer to q as the density of

object pixels. The total number of pixels is p = mn,

of which qmn are expected to be object pixels.

As a way of illustrating the probability model

used, we first consider the number of provisional

labels produced by a forward scan. A new provi-

sional label is generated if all neighboring pixels

in the scan mask are background pixels. Each pixel

has the probability (1− q) for being a background

pixel. Assuming that each pixel is generated inde-

pendently, the probability for all four pixels to be

background pixels is (1−q)4. In a 2D image, pixels

normally have four neighbors in the scan mask.

There are also four special cases that contain fewer

pixels in their scan masks.

1) The top-left pixel that has no neighbors in the

scan mask.

2) The pixels on the top-most row (except the

left-most pixel), each of which has one neigh-

bor to the left.

3) The pixels on the left-most column (except

the top-most pixel), each of which has two

neighbors.

4) The pixels on the right-most column (except

the top-most pixel) each of which has three

neighbors.

Including the normal case, there are actually five

different scan masks used during a forward scan.

An illustration of these five scan masks is shown

in Table I. The same table also lists the number

of instances (in column 3 under the heading of

instances) for each case and the probabilities of

an object pixel receiving a new label (in column

7 under the heading of labels). Multiplying the

density q and the values in columns 3 and 7 of

Table I, we get an estimate of the number of provi-

sional labels produced for each case. The following

equation shows the total number of provisional

labels expected:

np = q
(

1 + (m− 1)(1− q) + (n− 1)(1− q)2

+(n− 1)(1− q)3 + (m− 2)(n− 1)(1− q)4
)

.
(12)

Using the same probability model, we next esti-

mate the time required by SAUF to label a random

2D binary image. To do this, we divide the actual

operation performed by SAUF into six independent

categories.

1) Work done per pixel: Work performed on ev-

ery pixel, such as reading a pixel value from

main memory to a register, testing whether a

pixel is a background pixel or an object pixel,

and assigning the final label to each pixel (the

last phase of any two-pass algorithm).

2) Unaccounted work done per pixel: Work per-

formed on an object pixel that is not already

counted in the next four categories.

3) Time for visiting the neighbors: This is the

major part of the scanning procedure, which

is visiting the neighbors according to a deci-

sion tree. The process of traversing a decision

tree requires multiple if-tests and a non-trivial

amount of time. Because each if-test is for
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TABLE I

THE EXPECTED NUMBERS OF OPERATIONS PER OBJECT PIXEL USED BY THE SAUF ALGORITHM.

expected values

mask instances 3) neighbors 4) copy 5) union 6) labels

1 e 1 0 1 0 1

2 d e m − 1 1 q 0 1 − q

3
b c

e
n − 1 2 − q q(2 − q) 0 (1 − q)2

4
a b

d e
n − 1 3 − 3q + q2 1 − (1 − q)3 0 (1 − q)3

5
a b c

d e
(m − 2)(n − 1) (2 − q)2 4q − 8q2 + 7q3 − 2q4 q2(1 − q)(2 − q) (1 − q)4

a different neighbor, the amount of time re-

quired in this category should be proportional

to the number of neighbors visited during

the scanning phase. The expected number of

neighbors to be visited for each object pixel

is shown in column 4 under the heading of

neighbors in Table I.

4) Copying a provisional label or assigning a

new label: This includes two types of ter-

minal nodes on a decision tree shown in

Fig. 2, the new label operation and the one-

argument copy function. The amount of work

performed for each copy or assignment is a

small constant. To account for time spent in

this category of work, we need to estimate

the number of times a copy or an assignment

is performed. The expected number of copy

(or new label) operations to be performed for

each object pixel is shown in column 5 under

the heading of copy in Table I.

5) Union operations: This is a case where the

two-argument copy function is invoked by a

decision tree. Each union operation has the

same cost as two find operations. Based on

Theorem 2, we can say that the average cost

of a find operation is a constant, and therefore

the average cost of a union operation is a

constant. To account for the total cost of all

union operations, we need to estimate the

number of union operations performed. The

probability of performing a union operation

for each object pixel is shown in column 6

under the heading of union in Table I.

6) Flattening operation: This is the second

phase of the SAUF algorithm. The total cost

of this operation is proportional to the num-

ber of provisional labels. The probability of

assigning a new label to an object pixel is

shown in column 7 under the heading of

labels in Table I.

Next, we use the same probability model used

for estimating the number of provisional labels to

estimate the work of categories 3, 4, and 5. In

category 3, the number of if-tests performed is the

number of neighbors visited. For the normal case,

the computation of these quantities are based on the

decision tree shown in Fig. 2(b). We associate each

edge labeled “1” with the probability q and each

edge labeled “0” with the probability (1− q). Take

the example of computing the number of if-tests

required to reach a leaf of the decision tree. There

is one path from the root to a leaf that is of length

1 (i.e., if b is an object pixel). The probability

of taking this path is q. There are two paths of

length 3. The probabilities of taking these paths

are (1 − q)q2 and (1 − q)2q. The total probability

of taking a path of length 3 is (1− q)q. There are

four paths of length 4. The probabilities of taking

each of these four paths are (1 − q)4, (1 − q)3q,

(1− q)3q, and (1− q)2q2. The total probability of

taking a path of length 4 is (1 − q)2. The average

path length (or the average number of neighbors

visited) is q + 3q(1 − q) + 4(1 − q)2 = (2 − q)2.

This value is entered in the row for the normal

case (case 5) under the column heading neighbors

in Table I. Among the seven paths, there are two

leads to a two-argument copy function, which are

better known as the union operation. The two paths

have probabilities of (1− q)q2 and (1− q)2q2. The

total probability of invoking a union function is

q2(1 − q)(2 − q). This value is entered in the row

for the normal case under the heading of union.

The remaining 5 paths leading to either a simply

copy function or a new label function, we enter

their total probability under the heading of copy.

We have repeated the same evaluation for all four
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Fig. 4. Relative contributions from different categories of

work performed by SAUF.

TABLE II

THE DOMINANT TERMS FOR DIFFERENT CATEGORIES OF

WORK PERFORMED BY SAUF AND THEIR AVERAGES OVER

ALL POSSIBLE q.

formula average

3) neighbors q(2 − q)2 11/12

4) copy q2(4 − 8q + 7q2 − 2q3) 2/5

5) union q3(1 − q)(2 − q) 1/15

6) labels q(1 − q)4 1/30

other cases and entered the probabilities in Table I.

For a typical image, where m and n are suf-

ficiently large, the normal case should dominate

the four special cases. Only considering the normal

case, we can make a few observations. Our first

observation is that the probability of performing

a union approaches 0 for both small (q → 0)

and large (q → 1) densities. This agrees with our

expectation.

Theorem 4: Following a decision tree to deter-

mine a provisional label for an object pixel of a

typical random 2D image, 7/3 neighboring pixels

are visited on average.

Proof: In the normal case, the number of

neighbors visited is a simple quadratic formula,

(2−q)2. As the density q increases from 0 to 1, the

quadratic formula quickly drops from 4 to 1. Using

this formula, we can compute an average number

of neighbors visited. If the density q is uniformly

sampled between 0 and 1, we can compute the

average number of neighbors visited by simply

integrating the function f(q) = (2 − q)2 over q
from 0 to 1, which yields 7/3.

To show the relative importance of categories 3 –

6 defined on page 13, we display their probabilities

in the normal case multiplied by the density q in

Fig. 4. If the average cost per operation are about

the same, we see that the total cost of category 6 is

the lowest and that of category 3 is highest. Table II

gives the average values of the functions shown in

Fig. 4.

Based on the probabilities shown in Table I,

we have the following formula for the expected

execution time of SAUF, where the constants C1,

. . . , C6 represent the average cost per operation

of the six categories identified (np was defined in

Equation (12)).

p = mn,

no = qmn,

nn = q
(

m− 1 + (n− 1)(5− 4q + q2)+

(m− 2)(n− 1)(2− q)2
)

,

nc = q + q2
(

m− 1 + (n− 1)(5− 4q + q2)

+(m− 2)(n− 1)(4− 8q + 7q2 − 2q3)
)

,

nu = q3(1− q)(2− q)(m− 2)(n− 1),

tS = C1p + C2no + C3nn + C4nc +

C5nu + C6np. (13)

In the next section, we will use timing results to

estimate the constants C1, . . . , C6 on different test

machines.

V. EXPERIMENTAL RESULTS

In this section, we report the timing measure-

ments of our software implementation of various

connected component labeling algorithms. We also

verify the performance model developed for SAUF

on random images. The decision tree shown in

Fig. 2(b) was implemented in all test programs that

requires a decision tree.

A. Test setup

To measure the performance of various labeling

algorithms, we used four different sets of binary

images. We previously conducted a limited per-

formance study in which we used random binary

images only [43]. For this study, we used three

additional sets of images from various applications.

Some sample images are shown in Fig. 5, and

summary descriptions of these images are given in

Table III. We applied Otsu thresholding [44] on

the intensity to turn the application images into

binary images. The random binary images used in
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imgs

lung

nasa

noise

Fig. 5. A sample of the binary images used in tests. Object pixels are shown as black.

TABLE III

SUMMARY INFORMATION ABOUT TEST IMAGES, WHERE N IS THE NUMBER OF IMAGES IN THE TEST SET, P IS THE AVERAGE

NUMBER OF PIXELS IN AN IMAGE, O IS THE AVERAGE NUMBER OF OBJECT PIXELS, C IS THE AVERAGE NUMBER OF

CONNECTED COMPONENTS, AND Q IS THE AVERAGE NUMBER OF PIXELS PER COMPONENT.

name N P O C Q description

imgs 54 254,558 94,256 1,088 3,633 images used in [11]

lung 64 468,220 315,898 3 198,211 mouse lung structure images from lbl.gov

nasa 63 8,294,591 5,041,424 17,289 638 satellite images from nasa.gov

noise 78 1,750,000 875,000 35,434 309,246 random binary images (500 x 500, 1000 x 1000, 2000 x

2000)

this study were smaller than in our previous study,

so that they were closer to the application images

in size. Testing on these images may better reflect

what can be expected in a real application. The

test image set imgs also included some pathologic

cases (illustrated in Fig. 6) used in the analysis by

Suzuki et al. [11]. These images were used in part

for verifying the correctness of the programs.

To ensure that our measurements are not biased

by a particular hardware environment, we elected to

run the same test cases on three different machines

as listed in Table IV. With each machine, we also

chose to use a different compiler. This should make

it easier to identify the differences in performance

due to the algorithmic differences.

B. Timing the multi-pass algorithms

We implemented three variants of the Scan plus

Connection Table algorithm, namely, SCT-4, SCT-

2 and SCT-1, in software using C++ programming

language, and timed them on the three machines

listed in Table IV. A summary of the timing results

is given in Table V. Because the four sets of

test images have significantly different sizes, we

showed the average time for each set separately.

The timing measurements were made for each test

image. The test on each image was repeated enough
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steps spiralfingersieve

Fig. 6. Some pathologic test (pixel) patterns included in image set imgs.

TABLE IV

INFORMATION ABOUT THE TEST MACHINES.

CPU type Clock Cache Memory OS Compiler

(MHz) (KB) (MB)

UltraSPARC 450 4096 4096 Solaris 8 Forte workshop 7

Pentium 4 2200 512 512 Linux 2.4 gcc 3.3.3

Athlon 64 2000 1024 512 Windows XP Visual Studio .NET

times so that at least one second is used. A mini-

mum of five iterations was always used. The time

values reported are wall clock time. The speedup

of SCT-2 and SCT-1 were measured against SCT-

4. Each speedup value is computed for one test

image and the speedup values reported in Table V

are averages.

On each test platform, the three algorithms, SCT-

4, SCT-2, and SCT-1, show consistent relative per-

formances on the three sets of application images.

The performance characteristics are slightly dif-

ferent for random binary images (marked noise).

This is partly because the application images typ-

ically contain well-shaped connected components,

whereas the random images contain irregular con-

nected components. This irregularity slightly re-

duces the effectiveness of both SCT-1 and SCT-2.

On the application images, SCT-1 is about twice

as fast as SCT-4 and about 20% faster than SCT-

2. Theorem 4 states that the average number of

neighbors visited with the use of a decision tree is

7/3. Since SCT-4 always visits 4 neighbors, we ex-

pect a speed up of 12/7, i.e., about 1.7. The actual

observed speedup value shown in Table V is close

to 1.7 for random images. The actual speedups are

larger (around 2) for application images. In all test

cases, SCT-1 is never slower than either SCT-2 or

SCT-4. For this reason, we used a decision tree in

all of the subsequent tests.

C. Timing the two-pass algorithms

In this subsection, we compare the new Scan

plus Array-based Union-Find (SAUF) algorithm

TABLE V

SUMMARY OF TIMING MEASUREMENTS ON THE THREE

MULTI-PASS ALGORITHMS. THE TIME VALUES ARE IN

MILLISECONDS AND THE SPEEDUP VALUES ARE RELATIVE

TO SCT-4.

UltraSPARC
SCT-4 SCT-2 SCT-1

Time Time Speedup Time Speedup

imgs 96 52 1.8 44 2.1

lung 215 118 1.8 95 2.3

nasa 5776 2946 1.9 2880 2.1

noise 940 571 1.6 501 1.9

Pentium 4
imgs 15 9 1.6 8 2.0

lung 29 19 1.5 14 2.2

nasa 782 433 1.7 383 2.1

noise 173 117 1.5 97 1.8

Athlon 64
imgs 14 10 1.4 8 1.7

lung 26 19 1.3 14 1.8

nasa 687 454 1.5 394 1.8

noise 141 110 1.3 87 1.7

with other two-pass algorithms that uses a pointer-

based union-find with both path compression and

weighted union. One of the algorithms flattens the

active union-find trees after scanning each row of

the image as suggested by Fiorio and Gustedt [8].

We refer to this algorithm as SUF1. The other,

which does not perform the extra flattening op-

eration, is referred to as SUF0. In their analysis,

Fiorio and Gustedt concluded that flattening the

active trees after scanning each row is important to

reduce the worst-case time complexity [8]. Earlier

in this paper, we presented a refined analysis and
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TABLE VI

SUMMARY OF TIMING MEASUREMENTS ON THE THREE

TWO-PASS ALGORITHMS. THE TIME VALUES ARE IN

MILLISECONDS AND THE SPEEDUP VALUES ARE RELATIVE

TO SUF1.

UltraSPARC
SUF1 SUF0 SAUF

Time Time Speedup Time Speedup

imgs 83 62 1.3 22 3.7

lung 366 134 2.7 53 6.8

nasa 5279 3231 1.6 1164 4.6

noise 1056 742 1.4 243 4.4

Pentium 4
imgs 25 16 1.7 5 5.5

lung 131 25 5.2 10 13.3

nasa 1506 576 2.5 182 7.9

noise 332 186 1.9 47 6.6

Athlon 64
imgs 17 11 1.7 4 4.7

lung 86 17 5.1 7 11.7

nasa 1073 429 2.4 134 7.5

noise 237 140 1.9 34 6.5

showed that this extra flattening is unnecessary. The

timing measurements shown in Table VI confirm

our analysis.

As in the previous table, Table VI reports the

elapsed time used by various algorithms. In this

table, the speedup was measured against SUF1.

In our tests, SUF0 was at least 30% faster than

SUF1 on relatively small test images. On larger

images, the performance differences were much

larger. For example, on the lung structure images,

SUF0 was five times as fast as SUF1 on two of

the three test machines. From our analyses, we

expected SUF0 to be faster than SUF1; however, the

observed performance difference was much larger

than expected. Our new labeling algorithm SAUF

was usually four times or more as fast as SUF1,

and about twice as fast as SUF0. The performance

difference was even larger when many provisional

labels were combined into a small number of final

labels, as in the test image set lung.

D. Comparison with contour tracing algorithms

The Contour Tracing algorithm is one of the

most efficient algorithms for connected component

labeling [7]. In this subsection, we present some

timing results of the Contour Tracing algorithm and

justify the performance characteristics of the SAUF

algorithm and the Contour Tracing algorithm.

In our tests, we used two versions of the Contour

Tracing algorithm. The first is from the original

TABLE VII

THE AVERAGE SPEEDUP OF SAUF OVER CTO. THE

OVERALL AVERAGE SPEEDUP IS 1.5.

UltraSPARC Pentium 4 Athlon 64

imgs 1.0 0.8 1.0

lung 2.4 2.1 2.7

nasa 0.8 1.3 1.4

noise 1.5 1.3 1.7

authors of the algorithm, and this is referred to as

CTo (for CT original)1. The second is our imple-

mentation of an in-place version of the algorithm

referred to as CTi (for CT in-place). The original

version places the input image in a larger array

so as to avoid the need to check whether a pixel

is on the boundary of the image. It is expected

to take less time than the in-place version, but it

requires more memory. The in-place version avoids

the need for copying the image into a large array,

but uses more if-tests to check for pixels on the

image boundary. Because the input array to our

labeling algorithms contains only 0 and 1, CTi starts

to label the object pixels with the number 2 rather

than 1. This allows us to distinguish easily the

pixels that have been labeled from those that have

not. Because the Contour Tracing algorithm also

marks some background pixels as -1 to indicate that

they have been visited, to produce the same output

as other algorithms, our in-place version needs to

change the value -1 back to 0. We also take the

opportunity to reduce all positive labels by 1. This

change makes CTi a two-pass algorithm rather than

a one-pass algorithm.

Table VIII shows the average time used by

SAUF and the two version of Contour Tracing

algorithms. On the three larger sets of test images,

SAUF usually uses less time than do CTo and

CTi. Table VII shows the performance of SAUF

relative to CTo. In 8 out of the 12 cases shown

in Table VII, SAUF is noticeably faster than CTo.

Of the three sets of large images, the images in

the set named nasa are scenery photos which have

more well-defined connected components than do

the connected components in images from lung

and noise sets. The Contour Tracing algorithm

was relatively more efficient in identifying these

well-defined components because there are fewer

pixels on the boundaries of the components. For

the smaller images, SAUF and CTo performs about

the same overall.
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TABLE VIII

AVERAGE TIME (IN MILLISECONDS) USED BY CTO, CTI, AND SAUF TO LABEL THE TEST IMAGES.

UltraSPARC Pentium 4 Athlon 64

CTo CTi SAUF CTo CTi SAUF CTo CTi SAUF

imgs 21 28 22 4 7 5 4 5 4

lung 127 158 53 21 32 10 20 24 7

nasa 793 1294 1164 358 258 182 191 170 134

noise 327 468 243 67 97 47 59 74 34

TABLE IX

AVERAGE TIME (IN MILLISECONDS) USED BY CTO, CTI, AND SAUF TO LABEL THE FOUR PATHOLOGIC TEST IMAGES.

UltraSPARC Pentium 4 Athlon 64

CTo CTi SAUF CTo CTi SAUF CTo CTi SAUF

steps 14 15 8 2 2 1 2 2 1

sieve 17 16 8 2 3 1 2 2 1

finger 78 71 36 11 15 6 11 11 5

spiral 98 88 26 15 31 5 14 18 4

As shown in Table IX, on the four pathological

test images illustrated in Fig. 6, SAUF has an

average speedup of 2.4 over CTo.

The algorithm SAUF contains both optimization

strategies, a decision tree to minimize work during

scanning phase and the simplified algorithms to

reduce the time spent in union-find. From Ta-

ble VII, we see that it is often twice as fast as the

original version of the Contour Tracing algorithm.

The average speedup of SAUF over CTo, across

the four sets of test images and on three machines,

is about 1.5. In a previous test [7], the approach of

Scan plus Union-Find was shown to take an average

of 60% more time than the Contour Tracing (CTo)

algorithm. Because CTo is exactly the same pro-

gram that was used in [7], clearly the optimization

strategies did pay off.

Even though the input data to all test cases fit

in the memory of all three machines, we observed

many cases where the in-place version CTi was

faster than the original version CTo. This counters

the expectation that CTo is faster than CTi. This un-

expected observation can be explained as follows.

In the recent years, the increase in the CPU speed

has significantly outpaced the increase in memory

speed. This makes operations in CPU relatively

cheaper than memory accesses, which make the in-

place version more attractive today than in the past.

There are also other considerations in favor of

using CTi as well. In our tests, the images are

stored in files and are read into memory for each

test. The time used for reading the images is

TABLE X

THE CONSTANT VALUES (10−8
SECONDS) OF

EQUATION (13) PRODUCED WITH A CONSTRAINED

LEAST-SQUARE FITTING OF MEASURED TIME VALUES.

UltraSPARC Pentium 4 Athlon 64

C1 9.5 1.1 1.2

C2 0 0 0

C3 5.3 0.8 3.7

C4 0.2 0 0

C5 0 6.7 4.1

C6 0 11.5 5.4

not reported because we intended to compare the

labeling algorithms and not the I/O speed of the

systems. In the implementation of CTo, an image is

directly read into a larger array. If the input image is

already in memory, one has to copy the image into

a larger array. The in-place version can avoid this

copying and therefore could be more competitive.

In addition, if the down-stream analysis function

can cope with the negative number (-1) used to

mark some background pixels, it would not be

necessary to have the second pass through the

image array in CTi. In this case, the in-place version

would be even more competitive against the original

version.

E. Performance on random images

We developed a performance model for the time

needed by SAUF to label random binary images.

Next, we show some timing measurements that

support the performance model.
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Fig. 7. The measured time (in milliseconds) used by SAUF

agrees with the performance model (shown as broken lines)

described by Equation (13).

As shown in Table III, we used 78 random

binary images of various sizes in our tests. For

each image, we computed the average time used by

SAUF on each of the test machines. We used these

78 average time values to compute the six constants

C1, . . . , C6 for each machine. The computation

used a linear least-square formulation to minimize

the fitting error with a non-negative constraint3. The

results of C1, . . . , C6 for all three test machines

are shown in Table X. Because the three computers

used different types of CPUs and different operating

systems, and because our performance model does

not capture some important factors like cache sizes,

memory bandwidth, memory access latency, and so

on, we expect these constants to be different for

different machines. Category 2 was introduced as a

catch-all category. The value of C2 is computed to

be 0 on all three machines, which indicates that the

other five categories model the performance quite

well.

On all three machines, both C1 and C3 were

computed as positive values. The value of C1 is

the average time spent on per pixel operations such

as reading a pixel from memory to register and

assigning the final labels. This value is positive

because at a density of 0, SAUF uses some time

to label the image. The value C3 is the average

time used for visiting a neighboring pixel during the

scanning phase. The process of visiting a neighbor

involves accessing the pixel value of the neighbor

and performing an if-test on it. Both of these

operations consume a number of clock cycles. The

cost of visiting neighbors dominates the overall

shape of the timing curves shown in Fig. 7.

The constant C4 represents the average cost of a

copy operation and the operation to assign a new

label. We expected it to be small. This was indeed

the case in as shown in Table X. The values C5 and

C6 are zero for the UltraSPARC, but are nonzero

for the two others. This is likely due to the different

sizes of CPU caches on these machines as shown

in Table IV. Because the terms involving these two

constants are relatively small as shown in Fig. 4

and Table II, it is also likely that the curve-fitting

errors have a stronger influence on C5 and C6 than

on C1 and C3.

With the six constants shown in Table X, we can

use Equation (13) to compute the expected time. In

Fig. 7, we show the measured time along with the

3The computation uses the function lsqlin from the

optimization toolbox of MATLAB.
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expected time. We see that the expected time agrees

with the measured time to within 10% in most

cases. A case with noticeable discrepancy occurred

when random images of size 1000 x 1000 were

labeled on the UltraSPARC. In this particular case,

the estimated time is about 1/4 larger than the actual

measured time. Considering that there are many

important factors not captured by the performance

model and that we used the same constants for

images of different sizes, this discrepancy is not

unexpected.

In Fig. 8, we use the random images to illustrate

the relative strengths of SAUF, CTi and CTo. This

figure can be considered a more detailed view of the

last row of Table VIII. In this figure, the horizontal

axes are densities, which are fractions of pixels that

are object pixels. The worst-case time complexity

of all three of the algorithms are linear in the num-

ber of pixels in the image. However, the worst-case

linear relations were hardly ever achieved in the

tests conducted. The Contour Tracing algorithms

perform more work on boundary pixels, and as

a result they should take longer on images with

more pixels on the boundaries of the connected

components. For random images, when the object

pixel density is near a half, we find more pixels

in the boundary. Therefore, the two versions of the

Contour Tracing algorithm took the longest time

when the density was nearly one half. SAUF shows

less dependency on the density q. Overall, we see

that CTo took less time than SAUF when q is either

very small or nearly 1. For a large range of densities

from 0.1 to 0.9, SAUF is significantly faster than

both CTi and CTo. When the density is near 0.5,

SAUF can be 3 to 4 times faster than CTo.

The estimated number of provisional labels for

random images is given in Equation (12). As a san-

ity check for the performance model, we compare

this estimated number of provisional labels against

the actually observed number. We plotted the es-

timated and the observed number of provisional

labels in Fig. 9(a). The estimated values are close

to the observed values for q < 0.2. For higher

densities, the differences between estimated and

observed values become more pronounced. These

differences are due to the fact that the independence

assumption becomes more unreliable as q increases.

Because each union operation is likely to reduce

the number of final labels by one, we can subtract

the estimated number of union operations from

the number of provisional labels to produce an
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Fig. 8. Time (in milliseconds) used for labeling random

images with different densities of object pixels (image size

1000 x 1000).
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Fig. 9. The actual number of provisional labels and final labels observed plotted with estimated labels shown as broken lines.

estimate of the number of final labels (or number

of components). The estimate is shown in Fig. 9(b)

as broken lines. Because many union operations

actually involve two provisional labels that already

belong to the same union-find tree, our estimation

of the number of final labels is an underestimation,

as illustrated in Fig. 9(b).

VI. SUMMARY AND FUTURE WORK

We have presented two strategies for optimizing

the connected component labeling algorithms. The

first strategy minimizes the work in the scanning

phase of a labeling algorithm; whereas the second

reduces the time needed for manipulating the equiv-

alence information among the provisional labels.

Our analyses show that a two-pass algorithm us-

ing these strategies has the same worst-case time

complexity as do the best-known labeling algo-

rithms. We also showed with extensive tests that the

new two-pass algorithm named SAUF significantly

outperforms other well-known two-pass algorithms

and multi-pass algorithms. It even outperforms the

Contour Tracing algorithm by 50% on average. The

new algorithm is relatively straightforward to im-

plement. It also produces consecutive labels, which

are convenient for applications.

More work remains to be done for a better under-

standing of the performance features and trade-offs

of these strategies. For example, it would be helpful

to formalize the arguments given in the previous

section to decide when to use the Contour Tracing

algorithm and when to use SAUF. A derivation of

a bound on the maximum number of scans needed

by the SCT algorithm, as mentioned in Section IV,

would help us to understand SCT better. It should

also be interesting to apply the two optimization

strategies to parallel algorithms for connected com-

ponent labeling and for different image formats.
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