4 research outputs found

    Implementation of Data-Driven Applications on Two-Level Reconfigurable Hardware

    Get PDF
    RÉSUMÉ Les architectures reconfigurables à large grain sont devenues un sujet important de recherche en raison de leur haut potentiel pour accélérer une large gamme d’applications. Ces architectures utilisent la nature parallèle de l’architecture matérielle pour accélérer les calculs. Les architectures reconfigurables à large grain sont en mesure de combler les lacunes existantes entre le FPGA (architecture reconfigurable à grain fin) et le processeur. Elles contrastent généralement avec les Application Specific Integrated Circuits (ASIC) en ce qui concerne la performance (moins bonnes) et la flexibilité (meilleures). La programmation d’architectures reconfigurables est un défi qui date depuis longtemps et pose plusieurs problèmes. Les programmeurs doivent être avisés des caractéristiques du matériel sur lequel ils travaillent et connaître des langages de description matériels tels que VHDL et Verilog au lieu de langages de programmation séquentielle. L’implémentation d’un algorithme sur FPGA s’avère plus difficile que de le faire sur des CPU ou des GPU. Les implémentations à base de processeurs ont déjà leur chemin de données pré synthétisé et ont besoin uniquement d’un programme pour le contrôler. Par contre, dans un FPGA, le développeur doit créer autant le chemin de données que le contrôleur. Cependant, concevoir une nouvelle architecture pour exploiter efficacement les millions de cellules logiques et les milliers de ressources arithmétiques dédiées qui sont disponibles dans une FPGA est une tâche difficile qui requiert beaucoup de temps. Seulement les spécialistes dans le design de circuits peuvent le faire. Ce projet est fondé sur un tissu de calcul générique contrôlé par les données qui a été proposé par le professeur J.P David et a déjà été implémenté par un étudiant à la maîtrise M. Allard. Cette architecture est principalement formée de trois composants: l’unité arithmétique et logique partagée (Shared Arithmetic Logic Unit –SALU-), la machine à état pour le jeton des données (Token State Machine –TSM-) et la banque de FIFO (FIFO Bank –FB-). Cette architecture est semblable aux architectures reconfigurables à large grain (Coarse-Grained Reconfigurable Architecture-CGRAs-), mais contrôlée par les données.----------ABSTRACT Coarse-grained reconfigurable computing architectures have become an important research topic because of their high potential to accelerate a wide range of applications. These architectures apply the concurrent nature of hardware architecture to accelerate computations. Substantially, coarse-grained reconfigurable computing architectures can fill up existing gaps between FPGAs and processor. They typically contrast with Application Specific Integrated Circuits (ASICs) in connection with performance and flexibility. Programming reconfigurable computing architectures is a long-standing challenge, and it is yet extremely inconvenient. Programmers must be aware of hardware features and also it is assumed that they have a good knowledge of hardware description languages such as VHDL and Verilog, instead of the sequential programming paradigm. Implementing an algorithm on FPGA is intrinsically more difficult than programming a processor or a GPU. Processor-based implementations “only” require a program to control their pre-synthesized data path, while an FPGA requires that a designer creates a new data path and a new controller for each application. Nevertheless, conceiving an architecture that best exploits the millions of logic cells and the thousands of dedicated arithmetic resources available in an FPGA is a time-consuming challenge that only talented experts in circuit design can handle. This project is founded on the generic data-driven compute fabric proposed by Prof. J.P. David and implemented by M. Allard, a previous master student. This architecture is composed of three main individual components: the Shared Arithmetic Logic Unit (SALU), the Token State Machine (TSM) and the FIFO Bank (FB). The architecture is somewhat similar to Coarse-Grained Reconfigurable Architectures (CGRAs), but it is data-driven. Indeed, in that architecture, register banks are replaced by FBs and the controllers are TSMs. The operations start as soon as the operands are available in the FIFOs that contain the operands. Data travel from FBs to FBs through the SALU, as programmed in the configuration memory of the TSMs. Final results return in FIFOs

    High-Performance Modelling and Simulation for Big Data Applications

    Get PDF
    This open access book was prepared as a Final Publication of the COST Action IC1406 “High-Performance Modelling and Simulation for Big Data Applications (cHiPSet)“ project. Long considered important pillars of the scientific method, Modelling and Simulation have evolved from traditional discrete numerical methods to complex data-intensive continuous analytical optimisations. Resolution, scale, and accuracy have become essential to predict and analyse natural and complex systems in science and engineering. When their level of abstraction raises to have a better discernment of the domain at hand, their representation gets increasingly demanding for computational and data resources. On the other hand, High Performance Computing typically entails the effective use of parallel and distributed processing units coupled with efficient storage, communication and visualisation systems to underpin complex data-intensive applications in distinct scientific and technical domains. It is then arguably required to have a seamless interaction of High Performance Computing with Modelling and Simulation in order to store, compute, analyse, and visualise large data sets in science and engineering. Funded by the European Commission, cHiPSet has provided a dynamic trans-European forum for their members and distinguished guests to openly discuss novel perspectives and topics of interests for these two communities. This cHiPSet compendium presents a set of selected case studies related to healthcare, biological data, computational advertising, multimedia, finance, bioinformatics, and telecommunications

    High-Performance Modelling and Simulation for Big Data Applications

    Get PDF
    This open access book was prepared as a Final Publication of the COST Action IC1406 “High-Performance Modelling and Simulation for Big Data Applications (cHiPSet)“ project. Long considered important pillars of the scientific method, Modelling and Simulation have evolved from traditional discrete numerical methods to complex data-intensive continuous analytical optimisations. Resolution, scale, and accuracy have become essential to predict and analyse natural and complex systems in science and engineering. When their level of abstraction raises to have a better discernment of the domain at hand, their representation gets increasingly demanding for computational and data resources. On the other hand, High Performance Computing typically entails the effective use of parallel and distributed processing units coupled with efficient storage, communication and visualisation systems to underpin complex data-intensive applications in distinct scientific and technical domains. It is then arguably required to have a seamless interaction of High Performance Computing with Modelling and Simulation in order to store, compute, analyse, and visualise large data sets in science and engineering. Funded by the European Commission, cHiPSet has provided a dynamic trans-European forum for their members and distinguished guests to openly discuss novel perspectives and topics of interests for these two communities. This cHiPSet compendium presents a set of selected case studies related to healthcare, biological data, computational advertising, multimedia, finance, bioinformatics, and telecommunications
    corecore