

UNIVERSITÉ DE MONTRÉAL

IMPLEMENTATION OF DATA-DRIVEN APPLICATIONS ON TWO-LEVEL

RECONFIGURABLE HARDWARE

HIMAN KHANZADI

DÉPARTEMENT DE GÉNIE ÉLECTRIQUE

ÉCOLE POLYTECHNIQUE DE MONTRÉAL

MÉMOIRE PRÉSENTÉ EN VUE DE L’OBTENTION

DU DIPLÔME DE MAÎTRISE ÈS SCIENCES APPLIQUÉES

GÉNIE ÉLECTRIQUE

AOÛT 2016

© Himan Khanzadi, 2016.

http://www.polymtl.ca/ge
http://www.polymtl.ca/ge

UNIVERSITÉ DE MONTRÉAL

ÉCOLE POLYTECHNIQUE DE MONTRÉAL

Ce mémoire intitulé :

présenté par : KHANZADI Himan

en vue de l’obtention du diplôme de : Maîtrise ès sciences appliquées

a été dûment accepté par le jury d’examen constitué de :

M. BRAULT Jean-Jules, Ph. D., président

M. DAVID Jean-Pierre, Ph. D., membre et directeur de recherche

M. SAVARIA Yvon, Ph. D., membre et codirecteur de recherche

M. BOIS Guy, Ph. D., membre

iii

RÉSUMÉ

Les architectures reconfigurables à large grain sont devenues un sujet important de recherche en

raison de leur haut potentiel pour accélérer une large gamme d’applications. Ces architectures

utilisent la nature parallèle de l’architecture matérielle pour accélérer les calculs. Les

architectures reconfigurables à large grain sont en mesure de combler les lacunes existantes entre

le FPGA (architecture reconfigurable à grain fin) et le processeur. Elles contrastent généralement

avec les Application Specific Integrated Circuits (ASIC) en ce qui concerne la performance

(moins bonnes) et la flexibilité (meilleures).

La programmation d’architectures reconfigurables est un défi qui date depuis longtemps et pose

plusieurs problèmes. Les programmeurs doivent être avisés des caractéristiques du matériel sur

lequel ils travaillent et connaître des langages de description matériels tels que VHDL et Verilog

au lieu de langages de programmation séquentielle. L’implémentation d’un algorithme sur FPGA

s’avère plus difficile que de le faire sur des CPU ou des GPU. Les implémentations à base de

processeurs ont déjà leur chemin de données pré synthétisé et ont besoin uniquement d’un

programme pour le contrôler. Par contre, dans un FPGA, le développeur doit créer autant le

chemin de données que le contrôleur. Cependant, concevoir une nouvelle architecture pour

exploiter efficacement les millions de cellules logiques et les milliers de ressources arithmétiques

dédiées qui sont disponibles dans une FPGA est une tâche difficile qui requiert beaucoup de

temps. Seulement les spécialistes dans le design de circuits peuvent le faire.

Ce projet est fondé sur un tissu de calcul générique contrôlé par les données qui a été proposé par

le professeur J.P David et a déjà été implémenté par un étudiant à la maîtrise M. Allard. Cette

architecture est principalement formée de trois composants: l’unité arithmétique et logique

partagée (Shared Arithmetic Logic Unit –SALU-), la machine à état pour le jeton des données

(Token State Machine –TSM-) et la banque de FIFO (FIFO Bank –FB-). Cette architecture est

semblable aux architectures reconfigurables à large grain (Coarse-Grained Reconfigurable

Architecture-CGRAs-), mais contrôlée par les données. En effet, dans cette architecture, les

banques de registres sont remplacées par les FB et les contrôleurs sont les TSM. Les opérations

commencent dès que les opérandes sont disponibles dans les FIFOs qui contiennent les

iv

opérandes. Les données sont déplacées de FB à FB à travers les SALU tel que programmé dans

la mémoire de configuration du TSM. Les résultats finaux sont sauvegardés dans les FIFOs.

Ce projet de recherche se fonde sur les CGRAs et les Overlay Architectures (OEA), qui

permettent aux concepteurs de profiter d’une architecture précompilée sur FPGA et encore

fournir un moyen de configurer le système à un haut niveau. Nous proposons une méthodologie

de conception pour implanter un algorithme sur un FPGA qui est préconfiguré avec un CGRA.

L’algorithme de conversion nécessite un graphe de flux de données (DFG) comme entrée qui est

typiquement le corps d’une boucle. Une quantité maximale d’opérations est traitée en parallèle

et une nouvelle itération de la boucle est lancée le plus tôt possible (ASAP). Idéalement, ce

traitement est fait avant que la boucle en exécution ne soit finie. Ceci est réalisé en utilisant des

techniques de pipelinage logiciel inspirées de la technique d’ordonnancement itératif de Modulo

(Iterative Modulo Scheduling). L’ordonnancement Modulo est modifié de manière à ce que les

phases de placement et de routage soient intégrées. Dans l’architecture proposée, un tissu de

calcul générique contrôlé par les données est connecté aux processeurs standards. En fait, la

nouvelle architecture permet aux développeurs de contrôler, de recueillir et de gérer le flux de

données sur les banques FIFO. Le développeur est aussi capable de répartir l’exécution de

l’application entre les processeurs Microblaze et le TSM. Pour valider l’architecture et le procédé

de conception proposées, nous avons développé un exemple illustratif dans lequel un processeur

envoie une image en format RGB au tissu de calcul générique. Dans le tissu, l’image est

transformée en format Y, Cr, Cb. Les résultats montrent que, grâce au contrôleur DMA entre la

mémoire et le tissu, un gain de vitesse de 50 peut être atteint par rapport à une implémentation

logicielle pure.

v

ABSTRACT

Coarse-grained reconfigurable computing architectures have become an important research topic

because of their high potential to accelerate a wide range of applications. These architectures

apply the concurrent nature of hardware architecture to accelerate computations. Substantially,

coarse-grained reconfigurable computing architectures can fill up existing gaps between FPGAs

and processor. They typically contrast with Application Specific Integrated Circuits (ASICs) in

connection with performance and flexibility.

Programming reconfigurable computing architectures is a long-standing challenge, and it is yet

extremely inconvenient. Programmers must be aware of hardware features and also it is assumed

that they have a good knowledge of hardware description languages such as VHDL and Verilog,

instead of the sequential programming paradigm. Implementing an algorithm on FPGA is

intrinsically more difficult than programming a processor or a GPU. Processor-based

implementations “only” require a program to control their pre-synthesized data path, while an

FPGA requires that a designer creates a new data path and a new controller for each application.

Nevertheless, conceiving an architecture that best exploits the millions of logic cells and the

thousands of dedicated arithmetic resources available in an FPGA is a time-consuming challenge

that only talented experts in circuit design can handle.

This project is founded on the generic data-driven compute fabric proposed by Prof. J.P. David and

implemented by M. Allard, a previous master student. This architecture is composed of three main

individual components: the Shared Arithmetic Logic Unit (SALU), the Token State Machine

(TSM) and the FIFO Bank (FB). The architecture is somewhat similar to Coarse-Grained

Reconfigurable Architectures (CGRAs), but it is data-driven. Indeed, in that architecture, register

banks are replaced by FBs and the controllers are TSMs. The operations start as soon as the

operands are available in the FIFOs that contain the operands. Data travel from FBs to FBs through

the SALU, as programmed in the configuration memory of the TSMs. Final results return in FIFOs.

The present work builds on CGRAs, and Overlay Architectures (OAs), that allow a designer to

take advantage of a pre-compiled FPGA architecture and still provide a way to configure the system

at a higher level. We propose a design methodology to map an algorithm on an FPGA

vi

preconfigured with a CGRA. The mapping algorithm requires a data flow graph (DFG) as input,

typically the body of a loop. A maximum number of operations are processed in parallel, and a

new iteration of the body loop is started as soon as possible, ideally before the completion of the

current one, by using software pipelining techniques, inspired of Iterative Modulo Scheduling.

Modulo scheduling is modified in a way that placement and routing phases are integrated to the

procedure. In the proposed architecture, a generic data-driven compute fabric is interfaced to

standard processors. In fact, the new architecture enables the user to control, collect and manage

the data flow on FIFO banks. The programmer is also able to program an application split between

Microblaze processors and TSMs. To validate the proposed architecture and design method, an

illustrative example is developed in which a processor sends an RGB image to a processing fabric,

where it is converted to Y, Cr, Cb. Results show that thanks to DMA between the memory and the

fabric, a speedup of 50 are reached compared to a pure software implementation.

vii

TABLE OF CONTENTS

RÉSUMÉ ... III

ABSTRACT ... V

TABLE OF CONTENTS ...VII

LIST OF TABLES ... X

LIST OF FIGURES ... XI

LIST OF SYMBOLS AND ABBREVIATIONS... XIV

LIST OF APPENDICES .. XVI

CHAPTER 1 INTRODUCTION ... 1

CHAPTER 2 STATE-OF-THE-ART .. 6

2.1 Introduction .. 6

2.2 High performance computing architectures ... 7

2.2.1 Central Processor Unit (CPU) .. 7

2.2.2 Graphical Processor Unit (GPU) .. 9

2.2.3 Field Programmable Gate Array (FPGA) .. 10

2.2.4 Coarse-Grained Reconfigurable Architecture (CGRA) ... 11

2.3 Coarse-Grained Reconfigurable Architectures .. 12

2.3.1 Reconfigurable Pipelined Datapath (RaPiD) ... 12

2.3.2 Reconfigurable data path array (rDPA) ... 12

2.3.3 PipeRench ... 12

2.3.4 Reconfigurable Multimedia Array Coprocessor (REMARK) 14

2.3.5 Architecture for Dynamically Reconfigurable Embedded System (ADRES) 15

2.3.6 Expression-Grained Reconfigurable Arrays (EGRA) .. 15

viii

2.3.7 A mesh of parallel computing and communicating nodes ... 16

2.4 Programming of most popular CGRAs .. 20

2.4.1 Programming REMARK coprocessor .. 20

2.4.2 Programming MorphoSys coprocessor .. 21

2.4.3 Programming PipeRench Architecture ... 21

2.4.4 Programming RaPiD Architecture ... 22

2.4.5 Different techniques of the mapping applications on the CGRAs 22

2.4.6 Modulo Scheduling .. 25

2.4.7 Modulo Scheduling and CGRA ... 26

2.4.8 Summary of CGRA mapping algorithms ... 27

2.5 Conclusion .. 28

CHAPTER 3 PROPOSED SOLUTION BASED ON MODULO SCHEDULING

INTEGRATED WITH PLACEMENT AND ROUTING .. 30

3.1 Introduction .. 30

3.2 Mapping Applications on Two-Level Configurable Hardware 31

3.2.1 Mapping procedure .. 31

3.2.2 Propose an Assembly Code for Computing Fabric .. 41

3.2.3 Generates the instruction bits for TSMs using WinTim32 Application..................... 42

3.3 Runtime Executing Applications on Parallel Computing and Communicating Nodes . 43

3.3.1 Modified Fabric: ... 44

3.3.2 Runtime Executing Application on the Computing Fabric .. 46

3.3.3 General View of Runtime Executing Application Hardware 54

3.4 Conclusion .. 56

ix

CHAPTER 4 EXPERIMENTAL RESULT .. 57

4.1 Introduction .. 57

4.2 Simulation and manual mapping application on computing fabric................................ 58

4.3 Runtime RGB-YCbCr Transform on the CGRA ... 64

4.4 Conclusion .. 68

CHAPTER 5 CONCLUSION AND FUTURE WORK .. 69

CHAPTER 6 FUTURE IMPROVEMENT: .. 71

BIBLIOGRAPHY ... 72

APPENDICES .. 78

x

LIST OF TABLES

Table 2-1- properties of programming environment of CGRA. .. 27

Table 2-2-Technology mappings in recent years ... 28

Table 3-1-equivalent assembly code for a simple C code .. 50

Table 3-2- Implemented software decoder to select each FIFOs in one Tile of computing fabric 51

Table 4-1- require clock cycle to perform RGB-YCbCr application (length is 340 *3 R-G-B) 67

Table 4-2- Resources Utilizing by computing fabric 2×2 .. 67

xi

 LIST OF FIGURES

Figure 1-1- Reconfigurable architecture proposed by Allard et al. [3]© 2010 IEEE. 3

Figure 2-1-PipeRench Architecture [24]©2000 IEEE ... 13

Figure 2-2-MorphoSys reconfigurable computing[25] © 2000 IEEE ... 14

Figure 2-3-REMARK Architecture [26] © 1998 IEEE. .. 15

Figure 2-4-EGRA Architecture[29] ©2010 IEEE .. 16

Figure 2-5- CGRA Proposed by Allared [3] © 2010 IEEE ... 17

Figure 2-6-The architecture of the SALU [3] © 2010 IEEE .. 17

Figure 2-7- Schematic of: a) router type1:router1_0 , b) router type 2: router 2_0 [3] © 2010 IEEE

 .. 18

Figure 2-8-Central Router Network [3] © 2010 IEEE ... 19

Figure 2-9-Block Diagram of a TSM [3] © 2010 IEEE... 20

Figure 3-1- Illustrative example input data flow graph loop body .. 32

Figure 3-2- Illustrative example target Hardware Architecture Description 32

Figure 3-3- Calculate the Minimum Initiation Interval (MII) .. 33

Figure 3-4- Pseudo code for Hardware Architecture description example 34

Figure 3-5- ASAP and ALAP scheduling .. 35

Figure 3-6- create an ordered list of nodes ... 35

Figure 3-7- Main Function of the mapping DFG onto fabric .. 36

Figure 3-8- Modulo Routing Resource Graph (MRRG) for II=2 ... 37

Figure 3-9- Generate MRRG .. 37

Figure 3-10- Modulo Scheduling Place&Route (MSPR) .. 38

Figure 3-11- Place &Route Function ... 40

xii

Figure 3-12-MSPR result for our illustrative example Corresponding II=2 41

Figure 3-13-Two configurations (left and right) to map our sample DFG 42

Figure 3-14- New Network Router. ... 45

Figure 3-15- Merging Data from two routers to a FIFO Bank ... 46

Figure 3-16 - Microblaze coupled with the fabric .. 48

Figure 3-17- Double Link between Microblaze and Fabric for writing and reading process 49

Figure 3-18- Single Link communicating between Microblaze and fabric for writing and reading

process .. 49

Figure 3-19- A simple example of access to a FIFO by CDMA .. 52

Figure 3-20- a) spread out data by Hardware b) spread out data by the software 53

Figure 3-21- Runtime Execution Applications Architecture ... 55

Figure 3-22- Screen shot of the Implemented architecture to support runtime execution of the

applications using EDK .. 55

Figure 4-1- RGB-YCbCr DFG application .. 58

Figure 4-2-Target architecture (SALU00, SALU01, and their FBs only) 59

Figure 4-3- MRRG of the target architecture composed of two SALU 59

Figure 4-4-MSPR of Y output of RGB-YcbCr DFG application (II=0). 61

Figure 4-5- Final configuration context ... 61

Figure 4-6- Simulation Result Based given configuration context for RGB-YCbCr application . 62

Figure 4-7- DFG of a 4-point FFT ... 63

Figure 4-8-MSPR of a 4-Point FFT (II=2) ... 63

Figure 4-9-FFT 4-point Simulation (II=2) ... 64

Figure 4-10- Block Diagram of Data transferring from Microblaze and computing fabric 65

xiii

Figure 4-11- Capturing data transfer by the chip scope ... 66

Figure 4-12- Eight words transferring By DMA to fabric ... 66

xiv

LIST OF SYMBOLS AND ABBREVIATIONS

ALU Architecture Logic Unit

ADRES Architecture for Dynamically Reconfigurable Embedded system

CC Configuration Context

CU Control Unit

CDFG Control Dataflow Graph

CDMA Central Direct Memory Access

CPU Central Processing Units

CGRA Coarse-Grained Reconfigurable Architecture

CP Critical Path

DIL Dataflow Intermediate Language

DFG Data Flow Graph

EGRA Expression-Grained Reconfigurable Array

EMS Edge-centric Modulo Scheduling

FGRA Fine-Grained Reconfigurable Architecture

FU Function Unit

FB FIFO Bank

FPGA Field-Programmable Gate Arrays

GPU Graphics Processing Units

HPC High Performance Computing

II Initiation Interval

ILP Integer Linear Programming

LUT Lookup Table

xv

LLP Loop Level Parallelism

MRRG Modulo Routing Resource Graph

MSPR Modulo Schedule Place & Route

MII Minimum Initiation Interval

MS Modulo Scheduling

OpenCL Open Computing Language

PE Processing Element

QEA Quantum-inspired Evolutionary Algorithm

RAC Reconfigurable ALU Cluster

RCA Reconfigurable Computing Architecture

RC Reconfigurable Cell

RaPiD Reconfigurable Pipelined Datapath

rALU reconfigurable ALU

rDPA Reconfigurable Data Path Array

REMARC Reconfigurable Multi Media Array Coprocessor

RF Register File

RISC Reduce Instruction Set Computing

SOC System on Chip

SALU Shared-ALU

TSM Token State Machine

SA Simulated Annealing

VLIW Very Long Instruction Word

xvi

LIST OF APPENDICES

APPENDIX A – ASSEMBLY CODES FOR PROPOSED ARCHITECTURE 80

APPENDIX B – WINTIM32 .. 89

1

CHAPTER 1 INTRODUCTION

Having billions of transistors on a single chip, the best way to design modern computing chips is

to make it more parallel and configurable. General purpose processors have evolved to multicore

chips, where each core is independent of the other cores, but shares memory resources. For

example, the Xeon PHI 7120A processor has 61 embedded cores running up to 244 threads in

parallel at 1.2GHz[1].

Graphics Processing Units (GPUs) offer thousands of cores running in parallel. However, to be

more efficient, the same instruction must be applied to multiple data, i.e. single instruction, multiple

data (SIMD) architecture. For example, the Nvidia K40 chip has 2880 cores leading to a peak

performance of 4.3 TFLOPS for single precision arithmetic[2].

Both general purpose processors and GPUs are highly configurable devices, since they are founded

based on the Von Neuman model. They benefit from more than 50 years of research and

development in programming languages, libraries, and design tools, enabling computer scientists

to rapidly design and prototype complex applications.

However, mainstream processors are not necessarily the best targets for algorithms with high data

dependencies and/or low latency constraints, since the applications must be transformed to fit the

hardware. In such context, the best performances are achieved when the hardware is tailored to the

algorithm, as with Application Specific Integrated Circuits (ASICs) or Field Programmable Gate

Arrays (FPGAs). It is known that designing a complex chip is a long task reserved for experts in

the field. Despite decades of research and development, which today enable some high-level circuit

design, the need for experts and the long development times are presently the biggest obstacles to

the use of FPGAs as mainstream processing devices.

Coarse Grain Reconfigurable Architectures (CGRA) are intermediate solutions between

mainstream processors and FPGAs. They are consisted of several units for the processing and

exchanging of data with their neighbor units, which are typically organized as a mesh at very low

level. Each unit can be programmed to implement a part of the application and route the data to

other units. Thus, it is possible to tailor the hardware to the application, without the help of a

hardware design specialist. CGRAs are good candidates for repetitive computations with high data

2

dependency. They are employed as coprocessors to accelerate loops and to let the main processor

calculate control-dominant parts of an application.

Although the architecture proposed by Allard et al. [3] (refer to pages 35-38) is similar to CGRAs,

it is based on a data-driven mode of operation, i.e., the register banks are replaced with FIFO Banks

(FBs) and the controllers are Token State Machines (TSMs). Thus, the operations start as soon as

the operands are available in the FIFOs that contain the operands. The main advantage of this

architecture [3] is that it results in a fast and simple implementation of a user-defined design

implemented over a reconfigurable computing architecture.

On the other hand, the available hardware resources increase with each new generation of complex

hardware designs and designers should have access to these resources. To this end, designers

require a strong knowledge of the hardware design.

In fact, Allard’s architecture aims at effectively exploiting increasingly abundant resources to

increase the performance of hardware. The improved performance is achieved by using dedicated

hardware resources with the simplicity and flexibility of software development. Also, Allard et.

al[3] introduced the concept of two different configuration levels. At the lowest level, a hardware

design specialist assembles a dedicated CGRA, which is composed of building blocks, such as

token-based ALUs, FIFOs, and sequences, i.e., the control path of a token machine. The circuit is

then synthesized, placed and routed on an FPGA. At the highest level, computer scientists may

program the token machines to implement an application. Thus, the architecture may offer many

advantages, including reconfigurability, evolution, high (and low) level programming, and low-

level parallelism exploitation.

Figure 1-1 shows the architecture proposed by [3]. As can be seen in this figure, the architecture

includes three components: Shared-ALU (SALU), FBs and TSM. The architecture can be extended

in both dimensions. All the computing and routing capabilities of the fabric are concentrated in the

SALU, which is consisted of eight independent ALUs, their associated decoder, and one central

router network. The decoders are used to establish connections between the FBs and ALUs to

handle the token production-consumption. In addition, they send data tokens to the ALUs and get

3

back the results. Each decoder has two internal buffers (local accumulators) to temporarily store

operands.

Each ALU is controlled by its programmable TSM. TSMs contain the instructions, which include

the address of the operands (local accumulator or FB), the type of operation (16 different arithmetic

and logic operations are supported) and the address of the result that could be located in any of the

FBs connected to the SALU or in a local accumulator.

Figure 1-1- Reconfigurable architecture proposed by Allard et al. [3]© 2010 IEEE.

However, the proposed CGRA has been elaborated with fixed applications and was not directly

capable of supporting advanced features, such as running the application with new data at runtime.

It is to be noted that the FIFO’s contents are charged once the architecture is synthesized. If the

FIFOs need to be filled up with a new data, the CGRA should be re-synthesized. Given this, the

application of the proposed CGRA is restricted to executing a few input data in parallel. In addition,

at the highest level, this architecture still requires an auxiliary method to take advantage of the

simplicity and flexibility of software development. In fact, mapping an application manually with

thousand operations on the CGRA was essentially an intractable process.

Due to the abovementioned challenges, this work intends to address the problem of mapping

complex applications in the Allard et al. architecture.

4

At a high level, mapping a complex data flow graph with hundreds or thousands of nodes onto the

Allard et al. architecture is a complex, tedious and error-prone task. This work proposes an

algorithm to automate such mapping. Furthermore, the CGRA is enhanced regarding supporting

runtime executing applications. The proposed architecture is consisted of Allard et al. architecture

(CGRA-based) that is tightly coupled with a processor-based IP (Microblaze).

In the proposed architecture, CGRA is defined as a custom peripheral Intellectual Properties (IP).

This IP is attached to the Processor Local Bus (PLB), where the Microblaze is defined as a

microprocessor. To run the applications with a high data throughput, a Central Direct Memory

Access (CDMA) is employed. Using the CDMA, the CGRA’s FIFO banks could dynamically be

recharged with new data tokens. Then, it leads to support runtime execution applications through

CDMA by recharging embedded FIFO banks inside the CGRA.

The new architecture makes it possible to analyze the application code to separate the non-critical

from sequential or controller application code. The users of this architecture will be able to

determine what section of the application should be executed on the CGRA and the Microblaze.

The loops are executed on the CGRA as computation-intensive kernels while the Microblaze can

execute the sequential code.

In fact, the new architecture enables the user to control, assemble and manage the data flow on

FIFO banks. The programmer is also able to program both Microblaze processors and Token State

Machines. The proposed architecture provides a simple and fast method for programmers enabling

the runtime execution of the applications on the hardware at high abstraction level implemented

through software.

The contributions of this work can be summarized as:

 Introducing an automated mapping of the application on proposed CGRA to facilitate the

implementation of algorithms that are executing over that CGRA.

 Proposing a reconfigurable architecture model to manage, control and collect data tokens

set to the CGRA through a high-level language (C/C++) supported by software (Software

Development Kit (SDK)). These modifications on data tokens executing over the hardware

5

are possible at run time without a need to repeat synthesizing, placing and routing. Ease-

of-use and flexibility of the proposed architecture provide an opportunity to support

applications requiring dynamic adaptation.

This work is organized as follows: in Chapter 2, a literature review is done to clearly identify the

subject and describe exiting mapping algorithms in reconfigurable architectures based on CGRA

as well as describing the architecture proposed by Allard et al. In Chapter 3, a solution to automate

the mapping of applications on the CGRA is proposed in detail . In addition, a new architecture is

explained in detail to support runtime applications on existing CGRA.

In Chapter 4, experimental results are presented. Fast Fourier Transformation (FFT) and matrix

multiplication applications showed that the proposed automated methodology could lead to high

throughput and/or low latency within a reasonable design time. The proposed architecture was

elaborated, synthesized, placed and routed on a Xilinx Virtex-5 FPGA using suitable tools. In

addition, the runtime matrix multiplication result showed that the proposed architecture could lead

to a high throughput.

6

CHAPTER 2 STATE-OF-THE-ART

2.1 Introduction

The demand for high-speed accelerator devices or computing architectures to perform a

computation has significantly risen regarding. High-Performance Computing (HPC) architectures

is a suitable choice to address the demands mentioned above. HPC is used to solve complex science

problems that need high bandwidth, low latency, and high computing capabilities.

ASIC and DSP processors are built based on dedicated hardware that have been established in this

market. The demand for applications that could handle large real-time data streams creates new

demands, such as having general purpose microprocessors and more powerful FPGAs. However,

programming the FPGAs is not an easy task, since the programmer must have strong knowledge

on low-level design using low-level languages, such as VHDL and Verilog. The high-level

synthesis is an automated design process to generate a register-transfer level design from an

algorithmic description of a desired behaviour. Therefore, high-level synthesis facilitates the

programming of the digital systems, such as FPGAs. The high-level synthesis includes three

important tasks that are scheduling, allocation, and binding to form the complete control data path

and implement it onto the hardware. Scheduling determines the cycle that an operation can be

executed. The most famous scheduling algorithm are: list scheduling (ASAP, ALAP), force-

directed, time and resource constrained scheduling, and integer linear programming. The

Allocation process determines the appropriate number of the processing unit, storage, and

interconnection units. Finally, the binding connects placed and scheduled operations according to

their data dependencies. Walker et.al[4] introduced a tutorial for the scheduling problem which is

used by the high-level synthesis concept.

In this section, we will first describe the mainstream processors for high-performance computing

architectures, such as CPU, GPUs, FPGAs, and CGRA. The most popular CGRAs, such as Rapid,

rDPA, PipeRench, MorphoSys, REMARK, ADRES, EGRA, and a mesh of parallel computing and

communicating nodes are then studied. We will also present the available programming methods

7

to compile REMARK, MorphoSys, PipeRench and RaPiD architectures and explain the state-of-

the-art methods in mapping applications on the CGRAs.

Modulo scheduling problem will be addressed in the following section as the most popular method

in mapping application onto CGRAs. Finally, the summarized mapping applications onto CGRAs

will be presented in two different tables at the end of this section.

2.2 High performance computing architectures

Hardware technologies are very important since they accelerate HPC applications. Based on the

quest of HPC, the following components are used as HPC hardware: (i) central processing units

(CPUs) that are taking multiple processor cores into account for parallel computing; (ii) graphics

processing units (GPUs) that process huge data blocks in parallel ; (iii) Hybrid CPUs/GPUs

computing that is a very common solution for supercomputers, as well as its capability for desktop

computers and (iv) Field-Programmable Gate Arrays (FPGAs) that are also very useful for a certain

class of demanding applications.

Rapid growth and development of complex computation require high-performance computing

(HPC) hardware. HPC is used in parallel processing techniques to solve complex engineering

problems needing high bandwidth, high computing capability and low latency. Because of this

growth, it is impossible to reach high-performance computing by traditional computing systems

that contain only one CPU. To reach to higher performance, the HPC utilizes a combination of

different hardware platforms such as CPUs, GPUs and FPGA[5], [6] that will be discussed in the

following.

2.2.1 Central Processor Unit (CPU)

CPU is a vital part of a computer and contains two essential components, ALUs and Control Units

(CUs). The ALU manages the arithmetic and logical operations, whereas CUs can access to the

memory to read and execute the instructions[7], [8]. The design of CPU is based on the prefetching

and pipelining architecture. A computer architecture that uses this method facilitates fetching the

instruction before the current instruction ends and consequently, the throughput of instructions

8

increases. In order to decrease the required time to execute a program and to improve the high-

performance computers, the Reduced Instruction Set Computer (RISC) is used in CPU design.

Utilizing RISC may increase the number of internal registers inside the CPU in a way that the data

flow pipelining will be improved [7]. A brief history of CPU progress is studied in the following.

The first microprocessor was emerged by Intel, 4-bit 4000, in 1970. This chip contained 2,300

transistors with the capability of executing 92,000 instructions per second[8], [9]. Shortly, Intel

came with new innovations in CPU evolution in 8008 and 8080. Over time, the new evolution of

CPU is continually developed, and others companies, such as AMD and Motorola introduced their

products as a competitor to Intel. In 1993, one of the most popular CPUs called “Pentium” was

introduced with 60 MHz clock frequency and 100 millions of instructions per second. The

evolution on the Pentium continued until 2008, and both Intel and AMD introduced new generation

models of CPU. Intel has developed its product and introduced the first CPU, which had 2 billion

transistors [7]–[9].

According to Moore’s law, the number of transistors that could be placed inside a chip is restricted

and is approximately doubled every two years. However, available single core CPU may not

respond to new applications, since they require to be operated at high speed with higher

performance without lowering the price. Therefore, the competition of producing CPUs operating

at higher frequencies and high performance inside one core has reached a plateau.

The computer architects reached a new approach in order to have better performance; moving the

technology towards the multicore instead of using only one core inside a chip. A multicore

processor often runs in slower frequencies than one single core, but with an increased calculation

throughput. The term “multicore” refers to an integrated processor including two or more

processors attached in order to increase the performance via parallel processing. In parallel

processing, many calculations are performed at the same time and thus, the large problems can be

solved by breaking them into several smaller parts and executing each concurrently[7]–[9].

The multicore processor can execute multiple instructions at the same time in order to increase the

speed by high parallel computing algorithms implemented in software. With the use of parallel

computing, large problems may be solved faster.

9

In the following paragraph, the available multicore processors by Intel, AMD and Tilera will be

discussed. AMD Opteron 6000 series processors are based on multicore processors (containing 4,

8, 12, and 16). These series of processors support quad-channel memories in order to achieve high

bandwidth amount to 51.2 GB/s [6], [10]. The Tilera family processors contain 16 to 100 cores

based on Tilera’s iMesh on-chip network that are optimized for networking, video and cloud

applications. Each core consists of 64-bits very long instruction level. The mesh interconnection

technology used in Tilera is based on two modules. First module is used for streaming applications

and the second module in memory communication to reach high performance shared memory[11].

The first high-performance architecture of Intel was introduced by Xeon E5 family that supports

up to 8 cores with 20 MB shared memory[1]. They have also developed high-performance

computing and introduced a new Xeon family. This new generation of Intel is based on multicore

processors that extract a good performance from high parallel computing called Intel Xeon Phi,

which is based on Intel Many Integrated Core architecture. Intel Xeon Phi coprocessors are PCI

Express cards that enable higher performance gains for parallel tasks. Intel Xeon Phi coprocessors

provide up to 61 cores, 244 threads and 1.2 teraflops (Floating Point Operations per Second).These

coprocessors are categorized within three main product families; Intel Xeon Phi coprocessor 3100,

Intel Xeon Phi coprocessor 5100, and Intel Xeon Phi coprocessor 7100.

2.2.2 Graphical Processor Unit (GPU)

GPU has recently become an influential coprocessor as a general purpose processor. GPUs are

more efficient to perform parallel processing than CPU. This superiority is due to the basic nature

of the GPU based on parallel data architecture and programmable technology[6][12]. GPUs are

designed to accelerate demonstration and processing of visual images on a graphical output device.

GPUs can process and display millions of pixels, simultaneously, and their design objective was

to assist the video processing on devices, such as personal computers, cell phones, , etc.[7]. Design

architects employ the natural properties of GPU to solve the complex scientific problems via

general purpose processors. The general purpose GPUs are currently used in various HPC

application domains such as medical imaging, bioinformatics, and embedded systems and are an

ideal option for accelerator devices for massive data-parallel processing [12].

10

The programming model of GPU is based on a scalable processing array that consists of single

instruction multiple threads having several stream processors. There are several memory spaces in

GPUs, such as global and local memory. The global memory is accessible by all cores, and local

or shared memory is related to each microprocessor[13]. The 1990's years were the beginning of

GPUs by the introduction of 86C911 card by S3, which was one of the first standards for the GPU

industry. Evolution of GPUs continued to two-dimensional graphics processing in 1990's up to 3D

processing graphics processing, which are used in lower-end laptops today[8]. AMD and NVIDIA

introduced several models of GPUs, and each one has specifically improved characteristics

compared to the previous versions. The newly developed model of GPU called Tesla K80 that was

introduced by NVIDIA and comprised 24 GB memory and up to 2.91 TFLOPS double precision

performance with 480GB/s bandwidth. In fact, it consists of two GPUs placed inside one packet,

where each GPU has 2496 cores [14]. Tesla K80 is ideal for high-performance computing

accelerator that requires massive data throughput in single and double precision mode. AMD

designed AMD FirePro S10000, and it has 3584 stream cores with the accuracy of 1.48 TFLOPS

of double precision or 5.91 TFLOPS of single precision[14].

2.2.3 Field Programmable Gate Array (FPGA)

FPGAs are reconfigurable integrated systems and are semiconductor devices consisted of many

logic blocks linking together through programmable routing networking, embedded memory block,

and digital signal processing blocks. The logic block is the main component of FPGAs that is

implemented in a Lookup Table. LUTs contain a small attached memory that is programmed for

the output logic based on the inputs. FPGAs’ resources can be configured and linked together in

order to create custom instruction pipeline to determine which data is processed. On the other

hand, in CPU and GPU topologies the data path are fixed [8], [15].

 FPGA is highly based on high-level parallelism and is a perfect choice for implementing a portion

of the application that requires extensive parallelism. Xilinx and Altera are two well-known

companies to develop FPGAs. Stratix 10 is the newest FPGA introduced by Altera. Stratix 10

device architecture was manufactured on the Intel 14 nm Tri-Gate technology that provides the

highest performance and more power efficiency. Stratix 10 SX SoCs hard processor system with

11

64 bit quad-core ARM Cortex-A53 processor. The debug tools and heterogeneous advanced

languages such as OpenCL developed by Altera SDK as design environment facilitate the

application implementation on FPGA [16].

Xilinx Ultra Scale architecture is another high accelerator unique device that provides high-

performance, high-bandwidth and low latency. It should be noted that the ultra-scale devices are

suitable for processing massive data flows, since they have high bandwidth and low latency [17].

2.2.4 Coarse-Grained Reconfigurable Architecture (CGRA)

Based on granularity, reconfigurable computing architecture can be divided into two categories:

fine-grained and Coarse-Grained Reconfigurable Architectures [18], [19].

CGRAs are indicated as application-specific reconfigurable devices or embedded FPGAs. CGRAs

are introduced to tackle the disadvantage of Fine-Grained Reconfigurable Architectures (FGRAs)

for computing application. Some disadvantages of FGRAs are the configuration time, routability

and logic granularity. Logic granularity means that the architecture for FGRA is based on logic

elements and is not suitable to handle complex signal processing and multimedia computations.

The reconfiguration of FGRA is performed at bit-level; therefore the logic blocks are required to

operate wide data path, and its routing path may have a huge wide range and poor routability.

CGRA operates at the multiple-bit level. Therefore, it has less configuration time than FGRA [20],

[21].

CGRAs are consisted of an array of FUs interconnected by a mesh topology network and register

files are scattered among the CGRA. Some key characteristics of CGRAs include size, node

functionality, topology, and register file sharing. The size refers to the number of FUs that can vary

(e.g. 64 FUs); they are arranged as an array of 8×8. The functionality of each FU can be determined

to execute an arithmetic or logic operation, such as addition, subtraction or multiplication. There

are several configuration networks topology to provide interconnection between FUs. For example,

each node can be connected to its four orthogonal or eight diagonal neighbors. CGRAs can include

a local memory. The FUs have access to load or store data. Fine-grained architecture is based on

bit-level, and CGRA operates at multiple-bit data paths. The size of configuration bit stream of

12

CGRA is smaller than FPGA and thus, it has a shorter configuration time. The CGRA is becoming

an appealing option, since it consists of a large number of computation units with lower cost, power

efficiency, and high flexibility. In addition, CGRA is capable of being programmed, i.e. the

intensive computational kernels can be mapped to it. It should be mentioned that the CGRA has

been used in high performance embedded system [18], [19], [20], [21].

2.3 Coarse-Grained Reconfigurable Architectures

This section introduces the most popular architecture for CGRAs.

2.3.1 Reconfigurable Pipelined Datapath (RaPiD)

RaPiD is a coarse-grained field-programmable that can perform the computational data path as a

pipeline. RaPiD consists of ALUs, multiplier, register files and local memories, which can be

configured linearly over a bus. These units are interconnected and controlled via a combination of

static and dynamic signals. RaPiD has a linear data path that is an alternative approach with 2-D

mesh interconnection of PEs. The structure of data path in RaPiD is based on FUs, which are

connected to the nearest neighbor fashion[22].

2.3.2 Reconfigurable data path array (rDPA)

The Xputer architecture was one of the first research efforts in the coarse-grained field

programmable hardware. Reconfigurable Data Path Array is a reconfigurable device based on

field-programmable, which has 32-bits arithmetic logic unit. The rDPA is coarse-grain and consists

of a small array called Unit Data Path. Each reconfigurable ALU is also configured by several

numbers of rDPAs and can execute some operators of C language as an integer or fix-point data

types up to 32-bits length. The mesh network connection is used as interconnection network

between rALU, global bus and the bus memory[23].

2.3.3 PipeRench

The PipeRench architecture class consists of a set of physical pipeline stages so-called stripes. Each

stripe is made up of the Interconnected Processing Elements (PEs), which contain ALUs and

13

register files. PEs can access to a global bus and receive data from other register files from the

previous stripe or the current state through an interconnection network. Meanwhile, each ALU

comprised of LUTs plus some circuits like carry chains and zero detection. In PipeRench the aim

is to analyze the application’s virtual pipeline to map the physical pipeline stage to achieve the

maximum execution throughput. Figure 2-1 shows the architecture of PipeRench[24].

Figure 2-1-PipeRench Architecture [24]©2000 IEEE

MorphoSys is a reconfigurable computing system, which contains a reconfigurable processing unit

(as an array of Reconfigurable Cells), a general purpose processor (RISC), and a high bandwidth

memory interface. The RCs are interconnected as a 2-D mesh topology and are also coarse-grained.

The general processor can control the operation of the RCs. The high-bandwidth interface consists

of streaming buffers to transfer data between external memory and RC array. The main component

of MorphoSys is an 8×8 RC array, shown in Figure 2-2[25].

14

Figure 2-2-MorphoSys reconfigurable computing[25] © 2000 IEEE

2.3.4 Reconfigurable Multimedia Array Coprocessor (REMARK)

REMARK is a reconfigurable coprocessor that is tightly coupled to the main RISC processor.

REMARK is designed to accelerate specific application domains, such as multimedia and

video/Image processing. It consists of a global control unit of ALU and an 8×8 array programmable

logic element called Nano processors. Each Nano processor has a 16-bit data path. The

configuration for each Nano element is stored in 32-instruction RAM. Each Nano processor can be

connected to the four adjacent Nano processors via dedicated connections. The executions of Nano

processors are determined by input signals from the control unit. The input signals can directly

configure the instruction for each Nano processor using the main processor. Figure 2-3 shows the

architecture for REMARK[26][27].

15

Figure 2-3-REMARK Architecture [26] © 1998 IEEE.

2.3.5 Architecture for Dynamically Reconfigurable Embedded System

(ADRES)

The ADRES consisted of a 2-D reconfigurable architecture and comprised of two parts, which

couples a Very Long Instruction Word processor and a coarse-grained reconfigurable matrix. The

ADRES contains many FUs and register files which are connected via interconnected mesh

topology. The FUs can execute the operation at world-level bits and RFs store the intermediate

data. For VLIW processor, there are several FUs connected through multi-port register files. The

reconfigurable matrix comprised of many reconfigurable cells that contain FUs along with RFs.

FUs can be heterogeneous and also support the predicate operation[28].

2.3.6 Expression-Grained Reconfigurable Arrays (EGRA)

EGRA is a platform for the exploration of different designs of CGRA. The EGRA structure is

organized as a mesh that consists of three different types of cells i.e. reconfigurable ALU cluster,

memories, and multipliers. RACs include heterogeneous arithmetic and logic capabilities to

support the complex computation of entire subexpression. Each Cell is connected to its four

16

neighbors and also horizontal-vertical buses. One control unit is instantiated in external of mesh to

manage each cell. The architecture for 5×5 tiles of EGRA architecture is shown in Figure 2-4[29].

Figure 2-4-EGRA Architecture[29] ©2010 IEEE

2.3.7 A mesh of parallel computing and communicating nodes

The present work is built upon the architecture proposed by Allard et al.[3].The architecture is

similar to CGRAs, but it is data-driven, i.e., the register banks are replaced by FIFO Banks (FBs),

and the controllers are Token State Machines (TSMs). Thus, the operations start as soon as the

operands are available in the FIFOs that contain the operands.

The proposed computing fabric architecture by [3] is comprised of three individual configurable

modules i.e. Shared-ALUs, token state machine, and FIFO Banks. The proposed fabric architecture

5×5 is shown in Figure 2-5. As can be seen in this figure, the architecture can be extended in both

dimensions. All the computing and routing capabilities of the fabric are concentrated in the SALU,

which is consisted of eight independent ALUs, their associated decoder and one central router

network, as illustrated in Figure 2-6.

17

Figure 2-5- CGRA Proposed by Allared [3] © 2010 IEEE

Figure 2-6-The architecture of the SALU [3] © 2010 IEEE

The decoder is used to make the connection between FBs and ALUs. Decoder sends the data token

to ALUs to execute the operation. Also, each decoder has two internal buffers to store the operands,

temporarily. In order to perform an operation, one operand could come from the adjacent bank, and

another one could come from an internal buffer. After executing the operands, the ALU sends the

result to the decoder. Thus, the decoder will subsequently forward the result to its final destination

18

through the network. All routing decisions are performed through the router network. In fact, the

network router is the vital element of SALU that allows carrying out all data tokens to their

destination according to their respective order.

The network can accept eight tokens per cycle and return the same number to different destinations.

The network router consists of six distinct routers with two different types called type1 and type2.

Figure 2-7 shows the block diagram of router type1 and type2. The left side of router type1 connects

to the ALUs and router type2. The output of router type1 connects to the ALUs, FIFO Banks, and

router type2. While the router type 2 only has communication with router type1.

Figure 2-7- Schematic of: a) router type1:router1_0 , b) router type 2: router 2_0 [3] © 2010

IEEE

Each type1router is associated with one side of SALU. In addition, the type 1 router has no contact

with other type1, yet they can access to router type 2 to send data token to different paths. A simple

round-robin algorithm is used for the network router to send all data token to their destination. The

19

block diagram of router network is shown in Figure 2-8. In this architecture, routing is performed

through the central router network. The network can accept eight tokens per cycle and return the

same number of tokens to their destinations.

Figure 2-8-Central Router Network [3] © 2010 IEEE

A token state machine is a program unit that stores the required instruction tokens according to a

specific application. Instruction can be used in order to control the transmission data tokens

between the SALU and RFs. TSM represents the direct interface between the user and the fabric.

The instructions must contain all the necessary information to choose the operands, operations,

destination, and SALU. Each TSM has eight independent parallel small state machines that each

pair corresponds to one FIFO bank.

Figure 2-9 shows the block diagram of a TSM. A FIFO Bank represents the system’s memory,

which is connected to the two different modules of SALU and TSM. The synchronization by data

is the foundation of the architecture, which happens by using data token. FB manages all the traffic

required to route the data token and instructions to SALU. Furthermore, it is possible to make

concurrent write and read of data tokens. Each FB consists of 16 independent register files R0 to

R15.

20

The TSM determines the data path and register file. The data token and instruction should be

transferred to specified SALU through FBs.

Figure 2-9-Block Diagram of a TSM [3] © 2010 IEEE

2.4 Programming of most popular CGRAs

This section gives the information about the programming of some CGRAs.

2.4.1 Programming REMARK coprocessor

REMARK coprocessor is tightly coupled to a host processor. The programming environment

allows programming of both host and coprocessor concurrently. REMARK programming

environment is comprised of the REMARK global instruction assembler and the Nano instruction

assembler. The GCC compiler programs the host processor. The global instruction assembler

begins with global assembly code and generates configuration data and label information. The

Nano instruction begins with Nano assembly code and generates the configuration code. Due to

utilizing the configurable REMARK architecture, the programmer attaches REMARK assembler

instruction into the C program. Using REMARK assembler instruction, the assembled code for the

host processor and binary code for REMARK instruction are generated. Finally, the GCC compiler

is used again to generate executable code which includes the host processor and the global and

Nano configuration data[18][21].

21

2.4.2 Programming MorphoSys coprocessor

MorphoSys uses GUI-based design tools to compile the application for reconfigurable array and

host processor. The programmer has manually to separate the input code between the host

processor and reconfigurable array. GUI-based includes mView, mLoad, and MCC. The mView

has been developed to help the designer in mapping application to the reconfigurable cells. The

mView can operate in two modes, programming mode or simulation mode. Based on both modes,

one context file is generated by mView that represents the user-specific application for each cell.

For system simulation, each application should be coded into the context words. This context word

generates by mLoad using the input file from mView. The MCC is a prototype C language compiler

that has been developed to compile code for MorphoSys. After partitioning the code between the

host processor (TinyRISC) and the RC arrays, the MCC generates the instructions for TinyRISC

processor. These instructions can control the RC array execution for parallel

computation[18][27][25].

2.4.3 Programming PipeRench Architecture

The PipeRench compiler maps computations described in a dedicated intermediate single-

assignment language so-called DIL into the PipeRench. As mentioned earlier, the PipeRench made

up of columns of pipeline stages and the model of the configuration of computation stage which

can use the execution of the next stage in the current stage. DIL can be observed as a language to

exhibit an intermediate representation of high-level language description such as C. It can also be

used to describe pipelined combinatorial circuits. The compiler employs the same internal

representation to perform synthesis, optimization and place and route. The compiler constructs a

hierarchical acyclic data flow graph as an intermediate representation of the application. The DFG

has nodes and edges where nodes represent the operations and edges represent the operands. After

the generation of global application’s DFG, the compiler does some optimizations over DFG; such

optimization includes traditional compiler optimization, for example, common subexpression

elimination, algebraic simplification, and dead code elimination. The placement and routing phase

is performed via DFG by a deterministic linear-time algorithm which is based on list

scheduling[24].

22

2.4.4 Programming RaPiD Architecture

The programming of RaPiD performs using RaPiD-C, a C-like a language to help the programmer

to a map of high-level computation description to the RaPiD architecture. RaPiD-C allows the

programmer to specify the parallelism, data movement, and partitioning. The mechanism Wait and

Signal are used by RaPiD-C for synchronization and assign right data into the RAM [30], [31].

2.4.5 Different techniques of the mapping applications on the CGRAs

This section provides a brief study of the state-of-the-art methods in mapping applications on the

CGRAs.

Ricardo et al. presented a Just-In-Time module scheduling for the mapping application onto

CGRA. Their proposed algorithm combines three distinct methods such as a mapping algorithm, a

crossbar network, and virtual coarse-grained reconfigurable architecture. A module scheduling

algorithm is used in the mapping algorithm to map loops into virtual CGRA. The algorithm is based

on a greedy heuristic, and virtual CGRA is a layer on top of FPGA. They have also proposed a

CGRA based on crossbar network instead of mesh topology network [32].

The resource constrained mapping of DFG onto CGRA has been presented by Naifeng. The

resource constrained mapping problem is formulated using ILP; the produce optimal result is

created by ILP for the mapping of the DFG onto the CGRA. In order to accelerate the problem-

solving, they have also proposed a heuristic algorithm by using the maximum flow minimum cut

algorithm for practical use and large problem[33].

In data-driven mapping using local patterns presented by Gayatri, to accelerate the mapping

application on to CGRA, a database of an example of high-quality mapping has been used based

on a search tree. The depth of search tree is reduced using placing pattern of nodes instead of single

ones. The anytime A* algorithm proposed in this research to find a good solution and improve that

solution to place a node on the CGRA. Anytime A* is a greedy algorithm that provides a solution

within certain bound to solve the problem of mapping of DFG on to CGRA. To solve the problem

mentioned above, they have also used the Anytime Multiline Tree Rollup method in which they

try to keep all solution paths diverse to ensure that results from previous steps are stored to avoid

23

repetition and traversing path. They have claimed that their proposed method outperforms the

simulated annealing algorithm to placement and routing nodes onto CGRA[34].

Akira et.al have proposed modulo scheduling algorithm to compile loops in a program onto CGRA.

Their algorithm consists of resource reservation phase and scheduling algorithm. The resource

reservation phase guarantees the resources needed at the steady state such as FUs consumed by

operation and routing resources. Resource-aware placement algorithms were proposed to shorten

the solution time. In order to map an application onto target architecture, a compact graph has been

used in [35].

Yuanqing has proposed an algorithm to map applications written in a high-level language program

such C onto CGRA. His proposed algorithm contains 4 phases such as translating source code to a

control data flow graph, task clustering and ALU data path mapping, scheduling and resource

allocation. In the first phase, the input C program translated into CDFG and some optimization and

simplification perform on the CDFG. In the second phase, the CDFG is partitioned into several

tasks to assign them on to ALU. In the third phase, the clustered graph is scheduled and mapped to

an unbounded number of fully connected ALUs. Finally, the last phase, the scheduled graph in

prior phase is assigned to ALU and in the phase, the other resources such as buses, register,

memories, etc. are assigned[36].

A routing-aware mapping algorithm has been presented for CGRA by Ganghee. An integer linear

programming has been considered for Steiner point routing, i.e., for optimal map application onto

CGRA instead of spanning tree based routing. In addition, a fast heuristic mapping algorithm for

CGRA that is based on routing aware and incorporated of Steiner point has been presented. The

heuristic algorithm contains two phases: list scheduling and quantum-inspired evolutionary

algorithm. Using list scheduling the constructed CDFG from the application is scheduled with the

given resource constraint to get the initial solution and determine the priority of the node. Dijkstra

algorithm is used to find the shortest path between two PEs. The QEA is like a genetic algorithm,

and it evaluates each case to reach the best answer of mapping CDFG on to CGRA[37], [38].

Mapping application onto reconfigurable KressArrays proposed by Hartenstein. KressArrays

consists of a mesh of a PEs which is also known as reconfigurable data path units. The application

24

written in a high-level programming language are placed and routed on the rDPUs using simulated

annealing. A given data path would place and routed on the hardware using simulated annealing

based mapper [23][39].

Hyunchul proposed a software pipelining technique for CGRA that leverages module graph

embedding referred to graph embedding from graph theory. To place the operations of loop body

of the application on CGRA, they have presented three dimensions of CGRA that two of them are

related to the FUs and third dimensions assigned to time slots. Module scheduling performed with

each set of the operations which are located in the same level of DFG. Three-dimensional

scheduling grid is filled for each group of scheduled operation by the skew manner in considering

with restricted FUs and time slot available. Also, some cost functions are defined between pair

DFG of nodes to reduce the routing path and optimize place and route. These functions are routing

cost, affinity cost, and position cost. Routing cost guarantees that producers and consumers are

placed close to each other. Affinity cost ensures that the producers with common consumers in

DFG are placed together. Finally, position cost ensures that the operations are left-justified on the

set of appropriate resources[40].

EMS for CGRA is a research issue in continues of previous work of Hyunchul. Modulo scheduling

is a technique in software pipeline of loops to exploit the parallelism of the CGRA. EMS tries to

perform the routing of the nodes instead of place nodes first and routing paths followed by

placement. During the routing process, if there is a path from the source to the destination of DFG

of nodes then placement is done after the routing[41].

Chen has proposed minor graph approach for mapping application onto CGRA. The CGRA

mapping problem has been formalized as a graph minor of the module routing resource graph

representing the CGRA resources and their interconnects [42].

A retargetable compiler, known as Dynamically Reconfigurable Embedded System Compiler

proposed by Mei. He proposed a module scheduling algorithm based on simulated annealing to

placement and routing operands on the CGRA. This compiler can parse, analyze transform and

schedule plain C program to CGRA[43][44].

25

Mei introduces a modulo scheduling algorithm to exploit loop level parallelism on CGRA in 2003.

Modulo scheduling algorithm used in integer linear program processor such as VLIW to improve

the parallelism by executing different loop iteration in parallel. Also modulo routing resource graph

proposed as an abstraction of hardware description and enforce to modulo constraint. The proposed

algorithm combines the FPGA place and route algorithm with modulo scheduling to achieve a

mapping of application onto CGRA [45].

2.4.6 Modulo Scheduling

Modulo Scheduling is a software pipelining technique employed to utilize instruction-level-

parallelism in the loops body using overlapping consecutive iterations. The loop body is

represented as a data flow graph where the nodes represent the operations, and the edges represent

the data dependency among the operations. MS tries to find a pattern to develop it by several

iterations of operations. MS utilizes a different approach in which the operation’s placement is

performed in a cyclic interpretation without any resource conflicts and data dependency violations.

The scheduling process includes three stages such as Prolog, Kernel, and the Epilog. The kernel

corresponds to the steady-state execution in different consecutive iterations. The instructions of a

repetitive pattern of operations are called kernels[46][47].

 The goal of MS is to find a valid schedule in which the Initiation Interval (II) is minimized. II is

the delay between two successive iterations of the loop body. Ideally, all the loop bodies are

processed in parallel (II=0) if there are no dependencies and enough hardware resources. In the

worst case scenario, the next iteration of the loop body cannot start before the current one is

finished. Initially, the scheduler begins with Minimum II (MII) value between the maximum values

of the recurrence-constraints lower bound (RecMII) and the resource constraints lower bound

(ResMII). However, if a valid MS cannot be found, the scheduler increases the II by one, and the

scheduling is attempted again to find a possible valid MS [42].

MS attempts to explore one model of nodes in DFG that can be executed at the same level. This

model, as discussed earlier, is called kernel. The kernel consists of a pattern of DFG nodes. The

nodes can be executed as pipeline thanks to the specified pattern. To compute-intensive kernels

with high efficiency and flexibility, CGRA architectures are the best candidates. Accordingly, the

26

modified MS is a popular method to map an application in the form of DFG to the CGRA [42],

[46][47].

2.4.7 Modulo Scheduling and CGRA

Modulo scheduling is widely used software pipelining technique that is capable of compiling DFG

onto a family of heterogeneous CGRA. The goal of mapping is to generate a schedule that explicitly

combined with place and route the operation that the application throughput is maximized. This

criteria throughput is indicated using initiation interval by modulo scheduling. The II is essentially

reflecting the performance of the scheduled and P&R applications onto CGRA, and it plays a

central role in exploiting parallelism. Various algorithms have been developed for VLIW

processors. However, they have not been successfully applied for CGRA architecture. In another

word, the CGRA complexity architecture is much higher than VLIW, due to the complex

architecture of CGRA. Thus, the key metric used to map an application onto CGRA is II [32][41]–

[43].

The mapping application using MS onto CGRA may give rise to add some different approaches to

the scheduler. This difference for scheduling application is mostly due to the hardware

characteristics of the CGRA. Modulo scheduling for CGRA considers the scheduling, placement

and routing the operations onto function units. Placement determines on which FU of a 2-

Dimensional array will place an operation. Scheduling determines in which cycle, an operation can

be executed. Finally, routings will connect the placed and scheduled operations according to their

data dependencies [32][41]–[43].

In order to map the kernel (defined in Module Scheduling) onto CGRA, each particular cycle of

the kernel is mapped on each II configurations of CGRA, where each configuration is referred to

one configure the mapping of nodes onto CGRA. Configurations can be stored as a Configuration

Context (CC) for CGRA, and they can be updated in every cycle. The CC specifies the

functionalities and connectivity among FUs. The CC also includes the direction for each FU to

determine where to get its input from prior cycle and where to write its output for the next cycle.

In fact, CC is a valid mapped configuration of DFG nodes onto CGRA.

27

2.4.8 Summary of CGRA mapping algorithms

The characteristics of particular CGRA mainly effect on the compilation techniques. Most CGRAs

architectures are non-FPGA based that is coupled to a general purpose processor as a co-processor.

Given this, compiling such systems are not as a generic problem similar FPGA-based, because the

FPGAs-based has a standard architecture [48] [49].

An overview of placement and routing by well-known CGRA architectures is given in Table 2-1.

It can be seen from this table the structure of the CGRA architecture has an important impact on

the placement phase. Heuristic placement based on SA and genetic algorithms has been borrowed

in synthesis systems for FPGAs [20][18]. PADDI is used a scheduling algorithm in order to

resource allocation [20][18][50]. The routing based on greedy algorithms is used only in cases

where the routing is restricted to one dimension. Also, the P&R result based on greedy algorithms

would not be satisfied as well. The domain specifies which kind of applications can be executed

on CGRA, as mentioned in Table 2-1.Table 2-2 provides the summary of the recent mapping

algorithms on the CGRAs.

Table 2-1- properties of programming environment of CGRA.

CGRA Programming Placement Routing Coupling Domain

REMARC[26] Assembly Manual Manual Coprocessor MM

RaPiD[22] RaPiD-C SA Pathfinder Loose DSP

PipeRench[24] DIL Greedy Linear Greedy Coprocessor Data-Stream

Pleiades [50][20] C/C++ Direct - Coprocessor DSP

MorphoSys[25] C Manual Manual Tight DSP&MM

KressArray[39] ALE-X SA Neighbor Loose General-purpose

GARP[51] C Tree-matching Greedy Coprocessor General-purpose

PADDI[20][50] Silage By Scheduling Direct Loose DSP

MATRIX[52] Assembly Manual Manual Loose General-purpose

ADRES[43] C SA-MS Tight MM General-purpose

28

Table 2-2-Technology mappings in recent years.

Authors Technology Mapping DFG onto CGRA

Ricardo [32] Modulo scheduling based on a greedy heuristic.

Naifeng[33] Mapping problem formulated based on ILP.

Gayatri[34] Using search for local patterns to place node. A* algorithm proposed in this research to

find a good solution and improve that solution to place a node on the CGRA.

Akira [35] Modulo scheduling algorithm based on resource reservation phase and scheduling

algorithm.

Yuanqing [36] The high-level language program is used to map an application onto CGRA.

Ganghee [37] ILP consider to Steiner point routing in order to reach an optimal map application onto

CGRA. Also, a heuristic algorithm based on scheduling and QEA (similar to the genetic

algorithm) are combined to routing aware.

Hartenstein[38] Simulated annealing performs place and route.

Hyunchul [40] Graph embedding based on modulo scheduling.

Hyunchul [41] Edge-centric modulo scheduling, the placement, and routing algorithm are combined.

Chen[42] The mapping problem is formulated based on the minor graph. Algorithm searches for

one model of DFG in MRRG. The placement and routing are combined with modulo

scheduling and search.

Mei[43], [44],[28] A module scheduling algorithm based on simulated annealing is used to placement and

routing operands on the CGRA.

2.5 Conclusion

In this chapter, a review of the literature on topics specific to CGRAs along with mapping

applications algorithms has been presented.

Several researchers have proposed some algorithms to compile a program to automatically map an

application onto CGRA. There are numbers of automatic design and compiling tools developed to

exploit the massive parallelism found in applications and extensive computation resources of

CGRA. Some researchers utilize structure or GUI-based design tools to manually generate a design

that would be difficult to handle big designs. Some other have only focused on Instruction-Level

Parallelism that failed to make utilization of the CGRA efficiently and in principle cannot result in

higher parallelism than VLIW. However, ILP is limited in scope and fail to make resources

29

utilization efficiently in CGRA. Some recent researchers have concentrated on exploiting Loop-

Level Parallelism on CGRA by applying pipelining techniques such as modulo scheduling. Some

Module scheduling algorithms have been proposed based on simulated annealing. It begins with a

random placement of operation on the FUs of a CGRA, which may not be a valid modulo schedule.

Operations are moved between FUs until a valid schedule is achieved. Simulated annealing

techniques result in long convergence time for loops that contain a large number of operations.

Some researchers have exploited many greedy algorithms. For example, deterministic place and

route, heuristic depth-first placement and priority order placement with backtracking. Greedy or

heuristic mapping is the option of choice for many mapping problems due to its speed and

determinism. However, in the case of complex problems, it may perform poorly. Integer Linear

Programming has received attraction due to its clear representation and the possibility to obtain an

optimal solution. ILP has not been shown to be feasible for large scale mapping problems.

In the next chapter, modulo scheduling integrates with the placement and routing algorithm to map

a DFG nodes onto CGRA. Modulo scheduling attempts to find a pattern of the DFG nodes that can

be executed on the same level by the CGRA. The integrated placement function is done through a

recursive function that takes the ordered list of nodes from DFG. The order list of nodes is found

based on their mobility. The mobility of a node is the difference between the ALAP and ASAP

scheduling methods.

30

CHAPTER 3 PROPOSED SOLUTION BASED ON MODULO

SCHEDULING INTEGRATED WITH PLACEMENT AND ROUTING

3.1 Introduction

Implementing applications on reconfigurable computing architectures (RCAs) is an important

research topic due to its potential to accelerate a wide range of applications. However, configuring

and programming RCAs is a long-standing challenge. In this section, we propose a design

methodology to map an algorithm on an FPGA preconfigured with a Coarse-Grained

Reconfigurable Architecture (CGRA). At the lowest configuration level, the architecture of the

CGRA is elaborated, synthesized, placed and routed by some hardware design specialist using

suitable tools. At the highest level, someone who has no particular knowledge in hardware design

is, however, able to configure the CGRA to map an algorithm on a mesh of parallel computing and

communicating nodes. For medium and large applications, where the number of nodes varies from

tens to thousands, getting a good mapping of applications becomes manually intractable. Founded

on well-known mapping and routing algorithms that we have tailored to match our context, we

propose a design methodology to automate the mapping of applications on a two-level configurable

adaptive hardware fabric.

The second part of this section includes the runtime executing of the applications. From the first

part of this section, it is known that the applications in existing architecture have reconfigured one

time per each compile[3]. In other words, to execute an application with new data, the entire system

needs to be synthesized again. Thus, this process is time-consuming to execute an application with

different data. The time-consuming is mostly because this architecture is not tailored for runtime

executing applications. It should be noted that some of the applications have different data and can

be launched at design time. Therefore, it is not efficient to implement these applications by fixed

design. On the other hand, the on-line adaptation of application on hardware may permit significant

acceleration which results in the flexibility and adaptability of the platform to run time application.

To address these abovementioned problems the predefined architecture CGRA based on FPGA

enhances to a new architecture to runtime executing applications. The new architecture is

composed of predefined CGRA coupled with processor-based IPs or MicroBlaze. CGRA FIFO

31

banks can be dynamically fed with new data via CDMA. The CDMA helps to reach a high

throughput application running on the CGRA. The MicroBlaze enables the user to control,

assemble and manage the data flow on FIFO banks. In fact, the programmer can execute the

applications at runtime with different data using high abstraction level of the architecture without

to be involved in the low-level design.

3.2 Mapping Applications on Two-Level Configurable Hardware

This subsection addresses the question of mapping complex applications in an architecture

proposed previously, which is inspired by CGRAs. Such architecture introduced the concept of two

different configuration levels. At the lowest level, a hardware design specialist assembles a kind of

dedicated CGRA composed of building blocks such as token-based ALUs, FIFOs, and sequencers

(the control path of a token machine). The circuit is then synthesized, placed and routed on an

FPGA. At the highest level, people with a background in computer sciences program the token

machines to implement an application. Such architecture offers many advantages such as

reconfigurability, evolution, high (and low) level programming, low-level parallelism exploitation,

etc.

3.2.1 Mapping procedure

The mapping procedure takes a data flow graph (DFG) as input, typically the body of a loop. A

maximum number of operations are processed in parallel, and a new iteration of the body loop is

started as soon as possible, ideally before the completion of the current one, by using software

pipelining techniques inspired of the Iterative Modulo Scheduling. Modulo scheduling is modified

in a way that placement and routing phases are integrated into it.

Each node of the data flow graph is an operation that must be placed in an ALU for execution. The

inputs, intermediate results, and final results are placed in FBs. The routing is done from one FB

to other FB among the fabric through the central router of the SALU when an operation is triggered.

Eventually, a “void” operation can be launched only to route the data through the SALU. Finally,

all the configurations of the TSM are generated according to a placement and routing process of

operations and data transfers.

32

To ease the understanding of the proposed methodology, it will be illustrated with the small data

flow graph (DFG) loop body example in Figure 3-1. This DFG is to be mapped on a small subset

of the computing fabrics that has 4 ALUs and 2 FBs, as illustrated in Figure 3-2.

Figure 3-1- Illustrative example input data flow graph loop body

Figure 3-2- Illustrative example target Hardware Architecture Description

In the context of loop implementation, the proposed methodology attempts to minimize the

Initiation Interval (II), which is the delay between two successive iterations of the loop body.

Ideally, all the loop bodies are processed in parallel (II=0) if there are no dependencies and enough

hardware resources. In the worst case, the next iteration of a loop body cannot start before the

current one is finished. Function MII shows in Figure 3-3 describes how it computes the Minimum

33

Initiation Interval (MII) from the Hardware Architecture Description (HAD) and the Data Flow

Graph Loop Body (DFGLB).

Function MII (HAD, DFGLB);
Begin
 1 Nodes= number of vertices in DFGLB;
 2 Size= number of ALU in HDA;
 3 ResMII=Nodes/Size ;
 4 RedMII= Maximum data dependency
 5 II= max (ResMII, RedMII);
 6 Return II;
End

Figure 3-3- Calculate the Minimum Initiation Interval (MII)

Data Flow Graph Loop Body and Hardware Architecture Description are specified as the inputs

for this MII function, where DFGLB is referred to DFG loop and HAD to the property of computing

fabric such as FUs specifications, FBs specifications, and the interconnect architecture

specification. For this simple example, the HAD is described as pseudo-code in Figure 3-4.

The MII clearly depends on the number of nodes to be computed and available ALUs. In the best

case, all the ALUs are active at each clock cycle, and the MII is computed as in line 3 of function

MII illustrated in Figure 3-3. However, one iteration of the loop body may require some

intermediate results computed in the previous occurrence. Such dependencies may increase the

MII, which is taken into account in line 4 of function MII. The MII is the maximum value issued

from those two constraints.

To map DFG nodes on the target architecture, mapping algorithm first orders the nodes by

decreasing mobility. The mobility of a node is the difference between the ALAP and ASAP

scheduling times as shown in Figure 3-5.

34

Hardware Architecture Description (HAD)

Begin

1 <Number of FUs= 4>, <Number of FBs=2>

2 <Function Unit name= “ALU0”>

3 <port-name=”in1”>,<port-name=”out1”>

4 <in1-connect-to>FIFO Bank0

5 <out1-connect-to>FIFO Bank0, FIFO Bank1

6 <Function Unit name= “ALU1”>

7 <port-name=”in1”>,<port-name=”out1”>

8 <in1-connect-to>FIFO Bank0

9 <out1-connect-to>FIFO Bank0, FIFO Bank1

10 <Function Unit name= “ALU2”>

11 <port-name=”in1”>,<port-name=”out1”>

12 <in1-connect-to>FIFO Bank1

13 <out1-connect-to>FIFO Bank0, FIFO Bank1

14 <Function Unit name= “ALU3”>

15 <port-name=”in1”>,<port-name=”out1”>

16 <in1-connect-to>FIFO Bank1

17 <out1-connect-to>FIFO Bank0, FIFO Bank1

18 <FIFO Bank= “FB0”>

19 <port-name=”in1”>,<port-name=”out1”>

20 <in1-connect-to> ALU0, ALU1, ALU2, ALU3

21 <out1-connect-to> ALU0, ALU1

22 <FIFO Bank= “FB1”>

23 <port-name=”in1”>,<port-name=”out1”>

24 <in1-connect-to> ALU0, ALU1, ALU2, ALU3

25 <out1-connect-to> ALU2, ALU3

26 End

Figure 3-4- Pseudo code for Hardware Architecture description example

A null mobility means that the operation should be immediately computed after its parents since it

is on the critical path. The higher the mobility, the longer the routing can be without impacting the

computation time.

35

Figure 3-5- ASAP and ALAP scheduling

The ordered of DFG nodes is generated by function Generate_Ordered_Vertex_List (DFG) which

is shown in Figure 3-6.

Function Generate_Ordered_Vertex_List (DFG);
Begin
1 For each node vi ∊ DFG loop
2 //Compute the mobility
3 Mi(vi)= Level(vi ,ALAP(DFG))- Level(vi ,ALAP(DFG));
4 End loop;
5 List OVL = {vi ∊ DFG};
6 Sort OVL by increasing Mi then by decreasing ASAP level.
Return OVL

End Function;

Figure 3-6- create an ordered list of nodes

The ordered list of nodes is sorted by increasing mobility and decreasing ASAP level. In fact, the

ordered list of nodes is created based on the critical path in DFG. Thus, the nodes along the critical

path that have higher priority should appear earlier.

In our example, the function Generate_Ordered_Vertex_List (DFG) illustrated in Figure 3-6

returns the following: M1=1-1=0; M2=2-2=0; M3=1-1=0; M4=2-1=1; M5=2-2=0; OVL = {v1, v3,

v2, v5, v4}.

36

The proposed methodology consists of attempting to map the DFGLB on the HAD with the

computed MII. If the attempt fails, the II is incremented until a valid mapping is found. The

methodology is detailed in Algorithm I shown in Figure 3-7.

Algorithm I: Mapping Loop Body
Inputs: DFG, HAD;
Begin
1 II= MII (HAD, DFG);
2 OVL= Generate_Ordered_Vertex_List (DFG):

3 while (true) {
4 MRRG= Gen_Arch_Graph (II, HAD);
5 CC=MSPR (OVL, MRRG);
6 if (no mapping is found) II++;
7 else return CC;
 }

End Algorithm

Figure 3-7- Main Function of the mapping DFG onto fabric

The inputs for Algorithm I are Initiation Interval (II) along with Ordered Vertex List (OVL). The

mapping algorithm will start with MII. For each attempt, the Modulo Routing Resource Graph

(MRRG) is constructed for the current II. The MRRG is a graph representing the connectivity

resources between the ALUs and the FBs. A configuration is produced for each time slot in the II.

An MRRG is illustrated in Figure 3-8 for II=2. All the ALUs and the FBs present in HAD have

simply copied in each configuration as well as the routing between them, taking into account that

an operand in configuration N produces a result in configuration N+1.

37

Figure 3-8- Modulo Routing Resource Graph (MRRG) for II=2

MRRG function is shown in Figure 3-9 which returns a Modulo Routing Resource Graph (MRRG)

of hardware architecture. This function contains the nodes representing the FUs and the FBs and

the edges representing the connectivity among them.

Function MRRG (II, HAD);

Begin

1 For each vertex FUi, FBi∊ HAD loop

2 For j=0 to II-1 loop

3 Add vertex (FUi) j, (FBi) j to MRRG

4 // add nodes to each II different configurations for CGRA

 5 For each edge ∊ HDA loop

6 For j=0 to II-1 loop

7 Add edges between (FUi)j , (FBi)j to MRRG

8 // add internal edges to each II different configurations for CGRA

9 For each FUi, FBi ∊ MRRG loop

10 For j=0 to II-1 loop

11 Add edges between (FUi) j+II , (FBi)j+II+1 to MRRG

Return MRRG

End Function;

Figure 3-9- Generate MRRG

38

Finally, the mapping function MSPR (Modulo Schedule Place and Route) is launched. If a valid

mapping is found, the configuration context (CC) is returned as the final result. Otherwise, the II

is incremented and a new attempt is launched. The MSPR function is shown in Figure 3-10. This

function captures the scheduling plus placement and routing information. The algorithm attempts

to find a valid MSPR of DFG onto the MRRG.

Function MSPR (OVL, MRRG, CC)
Begin
1 Pop first node v from OVL that is the successor or the predecessor of an already routed node;
2 {pv }= placement information of predecessors of v;
3 {sv}= placement information of successors of v;

4 {pri} = Place _ Route (v, pv, sv, MRRG);

5 if {pri} is empty, return NULL;

6 For each pri loop {
7 Temporarily place and route node v at pri;
8 Recursive call to MSPR (OVL, MRRG, CC);
9 if (MSPR is successful) return CC;
10 //Backtrack by attempting the other pri
}
End Function

Figure 3-10- Modulo Scheduling Place&Route (MSPR)

The MSPR function is the core of the proposed methodology. It attempts to Place and Route (P&R)

the nodes one-at-a-time based on the ordered list of nodes OVL. Also, each node is mapped onto

target if and only if one of its successors or predecessors have already mapped except the first node.

MRRG and OVL are used as inputs for MSPR function.

The mapping of each node v directly depends on its predecessors (pv) and successors (sv). Then,

for each entrance node, first, the address mapped of pv and sv onto target are determined.

The placement is done through a recursive function that takes the ordered list of nodes OVL that

has not been placed and routed yet, the current state of the MRRG and the corresponding state of

the CC. The first node is removed from OVL and the function Place_Route returns a set of places

and corresponding routes opportunities for that node, taking into account its predecessors that are

already placed and routed, and eventually its successors that would already have been placed and

39

routed previously. If there is no place and route opportunity in the given context, the function

returns a null value forcing the previous calls to backtrack and try other place and route

opportunities at their level. If there are one or several opportunities, they will be tested one by one

until the remaining nodes in OVL can be fully placed and routed.

The function Place_Route relies on well-known routing algorithms such as A* or Dijkstra to

propose a set of P&R opportunities. Each opportunity has a cost that depends on of the length of

the path, the ALU that is already reserved in another configuration, and the affinity of the current

node with the rest of the nodes that are already placed.

When each DFG node is mapped onto MSPR, some criteria constraints are performed to satisfy

the mapping. For instance, the criteria are the minimum routing function, affinity cost, available

resource constraint, and warning-mapping. The minimum routing function indicates the shortest

path between the source and destination. The affinity cost determines that the two producers with

the common consumers should be mapped as closely as possible to each other. The available

resource constraint simply checks the number of available resources of each type (FU, RF) of

MRRG to be larger than the number of unmapped DFG nodes. Warning-mapping guarantees that

the current mapping can result in a successful mapping in the future or not. If the mapped node

cannot pass the constraint test, the algorithm has to choose other opportunities. Finally, the list of

opportunities is sorted by increasing cost such that the MSPR function starts by attempting to find

a solution with low-cost P&R configurations. The Place_Route function is described in

Figure 3-11:

This function (node_Place_Route) primarily focuses on routing, and the placement phase occurs

during the routing process. As an exception, the first node of OVL is placed in a free place of

MRRG. This method clearly improves the compilation time since it eliminates the redundant steps

to search an empty position.

When applied to our illustrative example, the MSPR function produces the place and route mapping

reported in Figure 3-12. For simplicity of exposition, only the routing edges are presented in

Figure 3-12.

40

Function node_Place_Route (v, pv, sv, MRRG)
Use: standard routing algorithms (A* or Dijkstra)
Use: a cost function that depends of the affinity
Begin
1 If (pv =null) and (sv= null) Then
2 map v into free place of MRRG;
3 else if (sv= null) Then
4 find a set of possible mapping for v near pv

5 find a set of routes from pv to v
6 else
7 find a set of possible mapping for v near pv and sv

8 find a set of routes from pv to sv through v
9 end if
10 compute the cost of each configuration
11 sort the list of configurations by increasing cost
12 Return the list of configurations
End function;

Figure 3-11- Place &Route Function

A complete body iteration requires three clock cycles, but a new iteration can already start after

only two clock cycles (II=2). The center of the figure represents the steady state (two

configurations). In configuration 1, ALU #2 computes the operation v5 of the previous iteration

while ALU #0 and #1 compute operations v1 and v3 of the current iteration. In configuration 2,

ALU #0 and #3 compute operations v2 and v4 of the current iteration. Figure 3-13 shows two

different configurations mapped in the CC of the CGRA to support the implementation of this

simple example. Those configurations are finally coded into the TSM (one TSM per ALU) where

each instruction involves two data token sources (the operands), an operator in the ALU and a

target FB to store the result. The following assembly code gives the sequence of instructions for

each TSM. OPAv1, OPBv1 refer to operand A and B of v1, respectively.

TSM0: OPAv1× OPBv1 OPAv2; OPAv2+ OPBv2 OPAv5.

TSM1: OPAv3× OPBv3 OPBv2;

TSM2: OPAv5+ OPBv5 Result;

TSM3: OPAv4× OPBv4 OPBv5;

As expected, TSM0, related to ALU0, is configured twice (once for v1 and once for v2).

41

3.2.2 Propose an Assembly Code for Computing Fabric

The token state machine (TSM) is acted as a program memory for the system that contains the

required instruction for an application implemented by computing fabric. Each instruction is

composed of 47 bits. For some applications that require hundred or thousand instructions, it is

extremely inconvenient to make all instructions manually. There is a lack of strong tools that can

take defined programs written by high-level language and creates the assembly code associated

with the computing fabric.

Figure 3-12-MSPR result for our illustrative example Corresponding II=2

42

Figure 3-13-Two configurations (left and right) to map our sample DFG

 The Python language is used To create the automatic assembly code for our computing

architecture; The user can write a program in a specific order based on the instruction format of

computing fabric. The Python language tool compiles the code and generates the assembly code

worked with the computing fabric. In Appendix A, each word of the proposed assembly language

is explained which is used to generate coding of instruction.

3.2.3 Generates the instruction bits for TSMs using WinTim32 Application

 WinTim32 is a fully functional Meta assembler and 1.5-pass assembler based on the Texas

Instruments Meta-Assembler known as "TIM”[53]. An assembler translates human-readable

symbolic assembly language programs into binary machine language that can then be loaded into

the computer’s memory. A Meta assembler allows the user to define the instruction formats for any

machine. Once the user defines instruction formats, the Meta assembler then serves as an

assembler. A Meta assembler is useful for people that are designing a new computer since they can

use it to assemble programs for the new computer without writing a new assembler from scratch.

WinTIM is a Meta assembler used to convert the symbolic strings of a source program to machine

language code.

43

 The full C++ source code is also available for the WinTim32 program. The source code has been

modified based on our requirements to generate the constant VHDL files. This VHDL file contains

all the instruction bits memory assigning to computing fabric.

To produce this VHDL file, the first step is to define all of the instruction formats and mnemonic

names. WinTIM and definition tables process the definition file are produced by the assembly

process.

The second step is to assemble the assembly language program for the new instruction formats

using the instruction definition tables produced in the definition phase. In this step, the Meta

assembler functions as a conventional assembler as it converts symbolic assembly language in a

*.src file into binary machine language.

Figure Appendix B 1 shows the instruction format with mnemonic names based on our computing

fabric. The source code of WinTim32 is modified based on our requirements, then the given

definition and VHDL file are generated. This VHDL files for one tile of computing fabric is shown

in Figure Appendix B 2. Therefore the VHDL file contains one TSMs with eight small tsm such as

tsm0-7. The tile of the computing fabric and the number of small tsm are defined as parameters,

i.e., the user can change them based on the size of the computing fabric, and the number of tsm

require in one tile. Binary instructions bits in VHDL files are matching with their assembly codes.

3.3 Runtime Executing Applications on Parallel Computing and

Communicating Nodes

The second part of this section intends to enhance the existing CGRA to exploit the benefits of the

runtime applications.

The proposed architecture contains a 2-D mesh computing fabric coupled with two Microblazes.

Microblaze is a virtual soft core microprocessor based on 32-bit the Reduced Instruction Set

Computer (RISC) architecture. The RISC architecture is optimized for implementation in Xilinx

FPGA in which the instruction and data buses are separated from each other. The Microblaze

44

processor architecture balances execution performance against implementation size. It is highly

customizable and supports a lot of configuration options.

These processors act at the overall runtime management, resemble, data flow and controlling of

data tokens through parallel computing mesh (called computing fabric). In addition, these

processors provide the performing IO with the external world via UART and other available

interfaces.

To execute an application on preconfigured CGRA on FPGA at runtime, the CGRA should be

enhanced to reload the contents of the FIFO banks dynamically in computing fabric. CGRA in new

architecture is defined as a custom peripheral Intellectual Properties (IP). This IP is attached to the

Processor Local Bus (PLB) where the Microblaze is defined as a microprocessor. In order to

execute the applications at runtime with possible high throughput, a Central Direct Memory Access

(CDMA) is used. Using the CDMA, the CGRA’s FIFO banks can dynamically feed with new data

token. Then, it leads to support runtime execution applications through CDMA by feeding

embedded FIFO banks inside the CGRA.

It is shown that the central router network in SALU has a bottleneck that is a strong limitation to

implementing large data flow graphs. In fact, the SALU can produce eight data tokens per cycle

but is only able to route four data tokens in the central router. This problem will be addressed and

fixed by duplicating the central router and adapting the decoders accordingly. We will then discuss

the new architecture to support runtime execution applications.

3.3.1 Modified Fabric:

In the new version of the fabric, some deficiencies have been resolved such as 1) internal buffer

inside the SALU, 2) central router network 3) the mesh topology is modified to the Torus-mesh

topology in order to utilize the edges boundary of fabric.

The prior internal buffers inside the SALU could store and load single data token whereas, in the

updated version of the computing fabric, internal buffers can store and load a streaming data. As

presented in Section 2.3.7, the SALU is composed of three elements; ALUs, decoders, and a

Central Router Network. It should be mentioned that the SALU defines generating, calculation and

45

the routing of the data tokens. The router could convey four data tokens to four distinct destinations

(up, down, right and left) at the same time. This structure may affect the performance of the

throughput of the system. To increase the throughput, the structure of the router should be modified

to send at least two data tokens to each side simultaneously. According to the number of ALUs on

each side, the structure of the SALU is modified. The possible solution is that the router is

duplicated two times and each pair of the decoder with its ALU on each side is connected to the

one router. Figure 3-14 shows the block diagram of the new network router.

Figure 3-14- New Network Router.

It is seen from Figure 3-14 that the network can accept eight tokens per cycle and return the same

number of tokens to their destinations. Figure 3-15 illustrates merging data from two routers to

each FIFO bank. Each FIFO bank contains 15 small FIFOs. It should be taken into account that the

single FIFO is accessible only by one router at each clock cycle.

46

Figure 3-15- Merging Data from two routers to a FIFO Bank

The assigning data tokens from routers to other FIFO banks (UP, Right and downsides) are

following the same roles as shown in Figure 3-15.

3.3.2 Runtime Executing Application on the Computing Fabric

3.3.2.1 Why Microblaze is used

In this section, a Microblaze would be coupled with the parallel computing and communication

nodes via Processor Local Bus (PLB). The flexibility of Microblaze gives this opportunity to the

users to balance the required performance of their application against the area logic cost of the soft

processor. Another advantage of using Microblaze is its ability to integrate customized Intellectual

Property (IP) cores. The Microblaze with IP can dramatically improve acceleration in software

execution time due to the algorithms being executed as parallel in hardware instead of executed

sequentially in software. One of the restrictions to Microblaze is the nature of RISC processor

architecture. Modern RISC processor includes two inputs and one output execution unit as ALU.

It is known that the Microblaze is a pipeline architecture that is composed of three or five pipeline

stages such as Fetch, Decode, Execute, Memory and Write Back. In general, each stage takes one

clock cycle to be completed. Thus, to complete an instruction, it takes three or five clock cycles to

be completed.

47

Based on the nature of the RISC processor architecture, the maximum throughput is restricted. In

another word, if an application needs a high rate of the calculations, the RISC architecture is not

useful. The modern applications that require several instructions are not suitable for this kind of

the architecture since they need more execution units. The user IP core is an alternative to solve

this problem to execute more than one instruction per cycle. However, attaching user IP to the

processor may have its restriction such as throughput of transferring data between IP and

Microblaze.

Computing fabric as IP attached to the MicroBlaze gives this opportunity to the users to execute

two different applications on the same platform. In addition, the user can separate the critical and

sequential application codes from each other that could be implemented on CGRA and MicroBlaze,

respectively.

3.3.2.2 Attaching User IP to the Microblaze via PLB

The parallel communicating nodes or fabric is implemented as a user IP, and it is attached to the

Microblaze via PLB. A channel is required between computing fabric and Microblaze to access to

each FIFO bank in the fabric. Figure 3-16 illustrates the general view of communicating between

computing fabric and Microblaze. The processor shown in Figure 3-16 acts at the overall run-time

management, resemble data flow and controlling of data tokens in FIFO banks in parallel

computing mesh.

48

Figure 3-16 - Microblaze coupled with the fabric

The size of the fabric in Figure 3-16 is 2×2 tiles, and each tile has a specific identification (ID)

from 1 to 4, where 1 is referred to the tile “00” and 4 to the tile “11”. Each tile of the fabric has 32

FIFOs that are placed in two different FIFO banks. The decoder in Figure 3-16 is responsible for

connecting right data to tiles using the ‘tile select’.

There are two methods to transfer the data to the fabric. The first method is shown in Figure 3-17.

In this method, the write enable (Wr_en) signal associated with each FIFO and their data are

separated. This method consumes more clock cycles since it needs two instructions per each data;

one for choosing the FIFO (Wr_en) and other for assigning data (Data_In). In addition, the read

process by Microblaze from fabric contains two links as shown in Figure 3-17.

49

Figure 3-17- Double Link between Microblaze and Fabric for writing and reading process

The second method used as a single link between Microblaze and fabric is shown in Figure 3-18.

In this method, one link for writing to the fabric contains the both “Wr_en” and “data” signals. In

addition, in the read process, one link is enough to read data from fabric.

Figure 3-18- Single Link communicating between Microblaze and fabric for writing and reading

process

3.3.2.3 Microblaze and streaming data

In this section, a bottleneck while the objective is to transfer streaming data between Microblaze

and computing fabric over PLB is explained and a possible solution to this problem is proposed.

As I mentioned in 3.3.2.2, the computing fabric is attached to the MicroBlaze as a co-processor.

There is an already established single link between MicroBlaze and computing fabric. This link is

useful when the burst transfer is not the objective and is more efficient when the single beat data is

the final point. In fact, the C code does not support the burst data between the processor and its

attached co-processor. For example Table 3-1 gives the equivalent assembly code according to C

code on the left side, where “Pointer to Fabric” is pointed to the computing fabric address.

Microblaze Fabric

Data_In

Wr_en

Data_Out

Rd_en

Microblaze Fabric

Data_In

Data_Out

50

It is seen from this table that the C compiler for this simple code uses three instructions. For each

line of code, a co-processor (computing fabric) receives the data within 12 clock cycles, i.e.,

MicroBlaze needs 12 clock cycles to send a single beat communication data over the PLB.

Table 3-1-Equivalent assembly code for a simple C code

Pointing to address of fabric Assembly code

*(Pointer to Fabric) = 207; //data [0];

 *(Pointer to Fabric) = 198; // data [1];

 107 *(Pointer to Fabric) = 207;

 00000780: lwi r3, r19, 36

 00000784: addik r4, r0, 207

 00000788: swi r4, r3, 0

108 *(Pointer to Fabric) = 198;

0000078c: lwi r3, r19, 36

00000790: addik r4, r0, 198

00000794: swi r4, r3, 0

Computing fabric architecture is based on data-driven which means that the operations start as soon

as the operands are available in the FIFOs that contain the operands. Data token results are

produced in one clock cycle if and only if data token inputs are available in their ports. Therefore

if each input data token is fed within 12 clock cycles, then its result is generated in the next clock

cycles by the computing fabric. It should be noted that the application is configured in low latency

with high-throughput. In fact, the computing fabric goes to standby until the next data arrives.

Given this, computing fabric is not a good candidate to support runtime execution due to its big

latency and low throughput as well as its cost space. In other words, computing fabric capability is

blocked by its channel to wait for receiving the new data tokens.

3.3.2.4 Direct Memory Access (DMA):

The main reason to choose the DMA as an option is to overcome the abovementioned problem for

PLB burst transfer. Using DMA, it is possible to read data directly from memory by the user

Peripheral IP- core or co-processor. In this work, the central DMA (CDMA) core, provided by the

51

Xilinx, is used. The user defines the length of the burst data transfer through CDMA. The maximum

throughput using CDMA to transfer the data between source and destination address is half data

per cycle. With this rate of the transmission, computing fabric can generate each data tokens in two

clock cycles.

Another advantage of CDMA transfer over the burst is its decoder module in Figure 3-16. This

decoder could be implemented in the software instead of the hardware via VHDL code. This

decoder in hardware needs 64 registers corresponding to each FIFO in one tile of the computing

fabric. Among these registers, 32 are used to write into FIFOs and the remaining 32 registers for

reading from FIFOs. A drawback to these registers is that the decoding address corresponds to each

FIFO consumes the large logic area which can increase the timing critical path. However, this

decoding module can be transferred to the software. Table 3-2 gives the implemented software

decoder corresponding to each FIFO. In order to write onto FIFOs, the tile number should first be

defined at the beginning.

Figure 3-19 shows an example of the burst data transfer by CDMA which is separated from

Microblaze. It is seen from this figure that the destination address is the FIFO5 of FIFO bank1. In

the first step, MicroBlaze selects the corresponding address to the destination FIFO. Then, when

the data arrives, it should be connected to the destination FIFO which is already determined by the

Microblaze.

Table 3-2- Implemented software decoder to select each FIFOs in one Tile of computing fabric

FIFO Bank UP FIFO Bank Down

FIFO_0: 0X00000001 FIFO_8: 0X00000100 FIFO_0: 0X00001000 FIFO_8: 0X00100000

FIFO_1: 0X00000002 FIFO_9: 0X00000200 FIFO_1: 0X00002000 FIFO_9: 0X00200000

FIFO_2: 0X00000004 FIFO_10: 0X00000400 FIFO_2: 0X00004000 FIFO_10: 0X00400000

FIFO_3: 0X00000008 FIFO_11: 0X00000800 FIFO_3: 0X00008000 FIFO_11: 0X00800000

52

Table 3-2- Implemented software decoder to select each FIFOs in one Tile of computing fabric

(continued)

FIFO Bank UP FIFO Bank Down

FIFO_4: 0X00000010 FIFO_12: 0X00001000 FIFO_4: 0X00010000 FIFO_12: 0X01000000

FIFO_5: 0X00000020 FIFO_13: 0X00002000 FIFO_5: 0X00020000 FIFO_13: 0X02000000

FIFO_6: 0X00000040 FIFO_14: 0X00004000 FIFO_6: 0X00040000 FIFO_14: 0X04000000

FIFO_7: 0X00000080 FIFO_15: 0X00008000 FIFO_7: 0X00080000 FIFO_15: 0X08000000

Figure 3-19- A simple example of access to a FIFO by CDMA

Once the data is placed in predefined FIFO by CDMA, it spreads out among computing fabric. The

software is responsible for spreading out data to other parts of the computing fabric based on its

demand. The advantage of this method consumes a less amount of the logic resources. Also, the

53

process of data developing to the entire part of computing fabric is easier by the software. An

example shows the efficiency of this method in Figure 3-20.

Figure 3-20- a) spread out data by Hardware b) spread out data by the software

Figure 3-20 (a) shows the data spreading out the procedure by the hardware. To this end, a

controller should be attached to receive data and transmit it to the computing fabric. This controller

contains a FIFO to buffer the input data arriving from CDMA and a complicated state machine.

The number of the states in state machines depends on the number of application’s inputs. If the

application has 32 inputs, the state machines need more logics. For example, for three inputs the

state machines are configured as three states. Each state connects one input to a FIFO. Each state

is transferred to other after in each clock cycle. The transferring of states are continued until to

send all inputs to the FIFOs.

54

Figure 3-20 (b) shows a similar process as in part (a), yet the system does not need any controller.

The user can decide if CDMA should connect to FIFO and defines its code to spread out data from

FIFO source to the other FIFOs.

3.3.3 General View of Runtime Executing Application Hardware

The proposed architecture contains a 2-D mesh computing fabric coupled with two Microblazes.

The high-level block diagram of the prototype system is illustrated Figure 3-21. It is known that

some applications exhibit multi-thread parallelism which can enhance the overall performance.

These processors provide the performing IO with the external world via UART and other available

interfaces. The dual-core microprocessors available in this architecture are independent. It is seen

from this figure that the link to each microprocessor is equal to have access to the FIFO banks. In

this case, through one microprocessor writes the data tokens into FIFO banks and others read the

data tokens from FIFO banks.

The CDMA gets data from the source address. In this case, it is BRAM attached to the PLB. CDMA

transmits the data to the destination address (computing fabric). It should be noted that both the

source and destination address should be accessible by the CDMA. It means that when CDMA is

attached to the PLB, then their source and destination devices must be attached to the PLB not

anywhere else.

Figure 3-22 shows the screen shot of the implemented proposed architecture using Embedded

Development Kit (EDK) tools to a runtime execution of the applications. It can be seen from this

figure two Microblazes along with CDMA are defined as masters. Computing fabric also is

attached as a co-processor to the PLB. BRAM_img is the source address which the data are stored

there, and CDMA can access to it.

55

Figure 3-21- Runtime Execution Applications Architecture

Figure 3-22- Screen shot of the Implemented architecture to support runtime execution of the

applications using EDK

56

3.4 Conclusion

The first part of this section introduced a design methodology to automate the process of mapping

applications onto an FPGA-based computing fabric developed in previous work. Made of parallel

computing and communicating nodes, the fabric resembles CGRA but it is data-driven, and it has

an original communication network that deserves a custom place and route methodology. The

proposed methodology, founded on the Modulo Scheduling algorithm, converges rapidly towards

a solution with a low initiation interval. The foundation of the methodology is a list scheduling

algorithm that takes into account the mobility of a node, the affinity with other nodes and the

already placed and routed predecessors and successors.

The second part of this section introduced a new model of high abstraction level runtime execution

of the application. The proposed architecture is shown to make the abstracts away from FPGA to

high-level design. Easy-to-use and flexibility of the proposed architecture have provided an

opportunity for those applications requiring to be dynamically executed. However, the proposed

architecture provides a simple and fast method for programmers enabling them to reload new data

to their applications on hardware.

.

57

CHAPTER 4 EXPERIMENTAL RESULT

4.1 Introduction

Implementing the proposed architecture for mapping on runtime reconfigurable is not simply due

to imposing many challenges and surprises. In the case of the proposed solution, the important

aspect is to prove the use of the resources against the performance. The resources could be

measured by suitable tools such as Planahead or ISE Xilinx tools, for an application implemented

onto our computing fabric. Also, the performance may be comparable while an application is

implemented in two distinct hardware architectures. To analyze the performance of the system,

especially in digital circuit design, several parameters may be involved. One which may affect the

performance is how long a design takes to reach to a final point of its test and implementation. It

should be noted that some applications need a designer with a good knowledge in hardware design.

It is known that developing an application on hardware; it is not always an easy task. For example,

to implement an application in VHDL, one may need a strong background in the hardware design

roles as well as time and budget. Once the designer decides to develop an application or reconfigure

it with new data, all previous attempts from the beginning of a design should be taken into account.

According to the existing challenges, this section provides an experimental result of the computing

fabric where the designer does not need to be involved in the low-level design, yet can implement

the application onto FPGA platform.

The result in this work is obtained by using a manual implementation of the proposed mapping

algorithm onto computing fabric. The main objective is to let FPGAs become the mainstream

computing hardware. This may be achievable in a future work when the proposed methodology

will be automated, optimized and compared with other approaches in the field of the high-level

configuration of FPGAs.

Finally, the proposed architecture is elaborated, synthesized, placed and routed on Xilinx Virtex-5

family using suitable tools. In addition, the runtime matrix multiplication result shows that the

proposed architecture can lead to high throughput to perform runtime applications.

58

4.2 Simulation and manual mapping application on computing fabric

The results presented in this section are based on the new architecture that enables eight data tokens

to be produced and routed at each clock cycle. The topology of computing fabric is based on Torus

-Mesh topology.

Our methodology is manually applied to two tangible examples taken from the DSP world. The

first example is a matrix multiplication algorithm (the RGB-YCbCr transform), which is illustrated

in Figure 4-1. Since the inputs are high-fanout nodes, these nodes are advantageously duplicated

to enhance the MII. In this case, the R, G, and B should be repeated since they are used three times

by the restricted ALUs on one side of SALU. Otherwise, the II can be increased, and it will affect

the maximum throughput of the circuit.

Figure 4-1- RGB-YCbCr DFG application

Two SALUs (SALU00 and SALU01) and their associated FB are considered as the target

architecture (2-D torus illustrated in Figure 4-2).

59

Figure 4-2-Target architecture (SALU00, SALU01, and their FBs only)

The ordered list of nodes is computed, and the MII is found to be one. The MRRG is constructed

and illustrated in Figure 4-3, where the Figure 4-2 is flattened to one row for the convenience of

drawing. Nevertheless, the topology remains the same.

Figure 4-3- MRRG of the target architecture composed of two SALU

In the next phase, the algorithm creates a Modulo Schedule Place and Route. MSPR is a subgraph

of MRRG capturing the scheduling, placement, and routing information. The algorithm attempts

60

to find a valid MSPR of DFG onto the MRRG. MSPR is a 3-D demonstration of P&R related to

the time axis. The first node is A0, which is mapped onto SALU00: ALU5. As can be seen from

Figure 4-3, the A0 output can be routed to FB0, FB1, FB2 or FB5, where each route has a cost. In this

example, FB0 has a high cost since it is connected to SALU00: ALU5, which is already used to

compute A0. The other nodes have the same cost. The algorithm will randomly choose FB2 to route

the A0 result. The remaining FB are kept as potential candidates if the algorithm has to backtrack

at a given time.

In order to reduce the search space, the algorithm attempts to restrict it to distance of predecessors

or successors from specific node. If there exists no available place in this specified address, the

algorithm should increment search space by one. In this step, the algorithm checks the possibility

for each routed to determine whether the selected destination creates a warning map in the future

of processing mapping or not. For example, FB0 is a high-cost place, because A1 will be mapped in

the future in this place. If the output of A0 is mapped into FB0, in this case, a conflict will happen,

and II is increased. Thus, the throughput decreases. In another word, for each FB only two ALUs

are assigned via a SALU.

The next node that reads from the ordered list is D0 since it is a direct successor of A0. It is mapped

to ALU0 because A0 has already been mapped to FB2 during the previous step. This process is

continued until all the nodes are mapped onto the MSPR. The resulting mapping is shown in

Figure 4-4. For simplicity, only the relevant routing edges are drawn. It can be seen from this figure

that each ALU is not used more than once, leading to a unary II, even if the full loop body requires

three cycles to complete. The final configuration context of the mapping is shown in Figure 4-5.

When the configuration context of given application is prepared, the assembly code is written for

each tsm according to FIFOs. The number of tsm should be equal to the number of ALUs. Then

for this example, we would have 15 programmed tsms to determine the routing data tokens from

the sources (FIFO banks) to destinations (FIFO banks) through two SALUs.

In order to implement this application onto the fabric, the written assembly code by the Python is

used as an input file for WinTim. Thus, WinTim can generate the instruction binary file for

embedded program memory within the fabric.

61

Figure 4-4-MSPR of Y output of RGB-YcbCr DFG application (II=0).

Figure 4-5- Final configuration context

In order to validate our configuration, the fabric has been manually configured and simulated in

VHDL. The achieved configuration of the application (RGB-YCbCr) by the ISIM Xilinx tools is

then simulated. A screenshot of the simulation is illustrated in Figure 4-6. The application is tested

62

for several consecutive inputs data Red, Green, and Blue. As can be seen from this figure, results

demonstrate that the 15 ALUs receive process and produce one operation at each clock cycle on

average, leading to the announced unary II. The results observed at the outputs (Y, Cb, and Cr)

have also been validated.

Figure 4-6- Simulation Result Based given configuration context for RGB-YCbCr application

The second example is a 4-point FFT, as shown in Figure 4-7. In this example, we attempt to map

the DFG in a single tile (8 ALUs). Figure 4-8 illustrates the MSPR obtained at the end of the

proposed methodology. ALU #0 and #5 have been used twice, leading to II=MII=2. Figure 4-9

shows the result simulation FFT4-point onto fabric along with II=2. ½ decreases the obtained

throughput for this example.

63

Figure 4-7- DFG of a 4-point FFT

Figure 4-8-MSPR of a 4-Point FFT (II=2)

64

Figure 4-9-FFT 4-point Simulation (II=2)

4.3 Runtime RGB-YCbCr Transform on the CGRA

This section provides the obtained result to runtime executing an application. The idea to runtime

executing for the computing fabric is discovered when the system attempts to be configured with

new data tokens. The first version of the computing fabric architecture is not tailored for runtime

execution applications. It should be noted that some of the applications can be configured at design

time. Thus, it is not efficient to implement these applications by a fixed design.

The proposed architecture in order to runtime executing applications is elaborated, synthesized,

placed and routed on FPGAs Virtex-5, using XILINX EDK 14.5 tools.

Two different ways implement the runtime matrix multiplication algorithm (RGB-YCbCr

transform) on the proposed fabric. First, only the RGB-YCbCr transform is implemented by the

MicroBlaze. This implementation is totally based on the software, and the application is configured

in software. The software provides the new data which is predefined in a Block RAM. Then, the

application is configured with new data periodically after each result. However, the achieved

throughput may not be efficient for some applications that need to get a result in every few clock

cycles. The nature of the RISC processor as well as transferring C code to assembly code by C

compiler result in obtaining low throughput results.

The second method of RGB-YCbCr transform is implemented by computing fabric which the

MicroBlaze feeds its data inputs. Computing fabric is implemented as a custom peripheral IP

attached to the PLB. It has been described in former that the computing fabric is a full pipeline

parallel computing architecture. Architecture is data-driven, which means that the operations start

65

as soon as the operands are available in the FIFOs that contain the operands. The token data results

are produced in one clock cycle if and only if data token inputs are available in their ports.

Based the architecture’s properties, the generated data tokens depends more on the arrival data

token rates stored in their FIFO banks. Then, application throughput can be directly determined by

a channel that can receive and transfer data tokens from computing fabric.

Figure 4-10 shows the block diagram showing that the MicroBlaze is responsible for transferring

application’s inputs to the computing fabric. The application (RGB-YCbCr) is already well

configured in computing fabric. Microblaze is ready to transfer data from memory and feed it into

a FIFO in computing fabric. Data spreading out for application is performed by computing fabric.

Figure 4-10- Block Diagram of Data transferring from Microblaze and computing fabric

Figure 4-11 shows the clock cycles captured by the chip scope required for MicroBlaze to transfer

three R-G-B set to the fabric. However, this transferring is not efficient since each transferring

takes 12 clock cycles, i.e., the computing fabric is free more than 90% of its time. The end point of

66

this result, shown in Figure 4-11 determines for eight different R-G-B, MicroBlaze needs 304 clock

cycles to feed computing fabric.

Figure 4-11- Capturing data transfer by the chip scope

The data transferring between Microblaze and its custom peripheral IP over PLB could be defined

as a bottleneck. Thus, we have decided to change the channel and use the CDMA to access the

data tokens directly by the computing fabric. In fact, by using CDMA, the MicroBlaze is bypassed,

and computing fabric can obtain data tokens directly from the block RAM. To this end, CDMA

takes the controlling of the PLB to transfer the whole predefined data length from BRAM to the

computing fabric in burst mode. Figure 4-12 shows the eight words transfer by CDMA to the fabric.

As can be seen from this figure, in each clock cycle one input is launched from memory and

transferred to the fabric. With this data rate, computing fabric can generate data token in every

cycle. Maximum throughput is then obtained with this created channel by CDMA.

Figure 4-12- Eight words transferring By DMA to fabric

The data length is defined in the software and CDMA can transfer this length of data to the

computing fabric. In fact, data includes three words R-G-B as inputs for implementation RGB-

YCbCr application on the computing fabric. The application is well configured on computing fabric

67

based on proposed methodology, i.e., in every clock cycle, three output Y, Cb, and Cr result if and

only if the data tokens arrive. Table 4-1 gives the number of clock cycles required to perform

RGB-YCbCr application in runtime configuration.

Table 4-1- require clock cycle to perform RGB-YCbCr application (length is 340 *3 R-G-B).

Platform Consuming Clocks Cycle Number of operations

Microblaze 107436 15300

Computing fabric using DMA 2172 15300

The data length is arbitrary selected as 1020 words. Microblaze is taken 107436 clock cycles to

perform 1020*15 operations while computing fabric consumes 2172 clock cycles to do the same

operations. As can be seen from this table, The total time to send our 1020 data elements is now

2172 clock cycles, which takes into account the time to configure the DMA. In this configuration,

a computer scientist with a pre-synthesized FPGA configured with our proposed architecture would

obtain a speedup of nearly 50.

Table 4-2 shows the resources utilization by the proposed architecture on target device platform.

Table 4-2- Resources Utilizing by computing fabric 2×2.

 #Slice Registers #Slice LUTs #Occupied Slices DSP48E Slices

Computing Fabric 23784(24%) 37357(38%) 14153(58%) 42(33%)

The computing fabric is occupied more resources against the Microblaze while it extremely

improves the throughput. As another advantage, we can consider that the FIFO’s capacitance in

computing fabric is eight words. The data length is 1020 words for R-G-B that is transferred into

the computing fabric’s FIFO. Then, FIFO’s data almost 128 times is reconfigured on runtime

without the computing fabric needs to be synthesized, placed and routed again.

68

4.4 Conclusion

As a conclusion, the computing fabric can do runtime execution of applications along with the

obtains high throughput result. In order to overcome to bandwidth bottleneck of the Microblaze,

we made a channel using DMA. The channel provides a high-speed data transferring between

computing fabric which is introduced as custom peripheral IP attached to the PLB. The proposed

architecture is shown to make the abstracts away from FPGA to high-level design. Easy-to-use and

flexibility of the proposed architecture have provided an opportunity for those applications

requiring to be dynamically executed. It has been shown that most of the existing architectures that

support runtime execution of applications, could only be implemented on a specific platform with

the user having knowledge about the roles of hardware design. However, the proposed architecture

has provided a simple and fast method for programmers enabling them to reload new data to their

applications on hardware by high abstraction level implementation through software. The obtained

result for RGB-YCbCr application is demonstrated a significant improvement factor of 98%

compared to the MicroBlaze.

69

CHAPTER 5 CONCLUSION AND FUTURE WORK

In this thesis, we have introduced a design methodology to automate the process of mapping

applications onto an FPGA-based computing fabric. The employed fabric has been developed using

parallel computing and communicating nodes. Although this fabric resembles CGRA, it is data-

driven and has an original communication network that deserves a custom place and route

methodology.

 By advancing the FPGA devices, the available resources increase. In other words, the number of

logic elements, logic blocks, and block memories may increase. While these advancements provide

more flexibility and capacity for designers, handling these resources will make new issues. The

resources may adversely affect the systems if careful considerations are not taken into account.

Thus, the use of available resources and time are two crucial factors in developing algorithms on

FPGA platform using low-level hardware programming languages such as VHDL and Verilog.

In this thesis, we have synthesized, placed and routed a coarse-grained reconfigurable architecture

FPGA according to the Allard’s method. The CGRA provides a solution for designers to utilize the

current FPGA’s resources more effectively. The CGRA consists of multiple cores running in

parallel. The proposed method automates the process of mapping applications on the CGRA based

on the Modulo Scheduling algorithm. It is shown that the proposed solution converges rapidly with

a low initiation interval.

Preliminary results, obtained by a manual implementation of the proposed methodology, led to the

best possible initiation intervals with a high occupation rate of the computing resources in the

fabric. It has been encouraging since we have obtained better performances than the current state

of the CGRA and associated tools. It has been shown that the computing fabric precludes any

complexity of the hardware implementation, yet maintaining flexibility available in the software.

However, it is known that the existing architecture for computing fabric has reconfigured one time

per each compile[3]. In other words, to execute an application with new data, the entire system

needs to be synthesized again. Thus, this process is time-consuming to execute an application with

70

different data. This is mostly due to the fact that this architecture is not tailored for runtime

executing applications.

It has been shown that the proposed architecture provides a simple and fast method for

programmers enabling them to reconfigure their applications on hardware by high abstraction level

implementation through software. It has also been shown that easy-to-use and flexibility of the

proposed architecture provide an opportunity to applications requiring to be dynamically executed.

CGRA in new architecture has defined as a custom peripheral Intellectual Properties (IP). This IP

is attached to the Processor Local Bus (PLB) where the Microblaze is defined as a microprocessor.

In order to overcome the possible bottleneck in transferring streaming data between Microblaze

and computing fabric over PLB, the DMA has been proposed to execute streaming applications on

the CGRA.

It should be noted that the application has configured in low latency with high-throughput onto

computing fabric by the automated mapping methodology. In fact, the computing fabric goes to

standby until the next data arrives. In view of this, computing fabric was not a good candidate to

support runtime execution due to its low throughput. In other words, computing fabric capability

was blocked by its channel to wait for receiving the new data tokens.

In order to execute the applications at runtime with possible high throughput, a Central Direct

Memory Access (CDMA) has used. Using the CDMA, the CGRA’s FIFO banks are able to feed

dynamically with new data token. Then, it leads to supports runtime execution applications through

CDMA by feeding embedded FIFO banks inside the CGRA. The obtained result shown a

significant improvement to execute runtime application on the computing fabric. For example, a

FIFO almost 128 times has recharged with new data through CDMA on runtime without the

computing fabric needed to be synthesized, placed and routed again.

Based on this new architecture along with its automated mapping methodology the computing

fabric is more accessible to support advanced features such as runtime parallelism processing. In

addition, the automated mapping application gives the advantage of the simplicity and flexibility

of software development.

71

CHAPTER 6 FUTURE IMPROVEMENT

In order to improve this work some improvements are listed in the following as future works such

as:

1. The proposed method may be automated and optimized in the field of the high-level

configuration of FPGAs. The proposed method is becoming an appealing option for

designers since they focus on the application-oriented in the software rather than hardware

design roles.

2. We have attached the computing fabric in the new design to the PLB due to that the PLB is

supported by a different prototype of Xilinx family. Since as we know, to support stream

data processing the Advanced eXtensible Interface (AXI) is more suitable. But, it is

supported for a new generation of Xilinx products family. Then, the other improvement

could transfer the computing fabric from PLB to the AXI to reach higher throughput

applications.

3. It is known that the existing architectures have reconfigured one time per each compile. In

other words, to reconfigure the architecture, the entire system needs to reconfigure again.

Consequently, this process is time-consuming to execute an application with different

configurations. This is due to the fact that this architecture is not tailored for run-time

reconfiguration. In order to runtime reconfiguration of architecture, the token state machine

will also change by the microprocessor in the runtime instead of the design time. On the

other hand, the on-line adaptation of application on hardware may permit significant

acceleration resulting in the flexibility and adaptability of the platform to run time

application. The online adaptation of application on hardware may be achievable in the

future works.

72

BIBLIOGRAPHY

[1] Intel, “Intel® Xeon PhiTM Product Family,” 2015. [Online]. Available:

http://www.intel.com/ content/www/us/en/high-performance-computing/high-

performance-xeon-phi-coprocessor-brief.html.

[2] Nvidia, “Tesla K40 and K80 GPU Accelerators for Servers | NVIDIA,” 2015. [Online].

Available: http://www.nvidia.com/object/tesla-servers.htm.

[3] M. Allard, P. Grogan, Y. Savaria, and J. David, “Two-level Configuration for FPGA : A

New Design Methodology Based on a Computing Fabric,” Circuits Syst. (ISCAS), 2012

IEEE Int. Symp., pp. 265–268.

[4] R. A. Walker and S. Chaudhuri, “Introduction to the Scheduling Problem,” IEEE Des. Test

Comput. 12.2, p. 60–69., 1995.

[5] H. S. Luka Daoud , Dawid Zydek, “A Survey of High Level Synthesis Languages, Tools,

and Compilers for Reconfigurable High Performance Computing,” Adv. Syst. Sci., pp. 483–

492, 2014.

[6] B. Liu, D. Zydek, H. Selvaraj, and L. Gewali, “Accelerating high performance computing

applications: Using CPUs, GPUs, hybrid CPU/GPU, and FPGAs,” Parallel Distrib.

Comput. Appl. Technol. PDCAT Proc., pp. 337–342, 2012.

[7] R. H. Landau, “A Beginner’s Guide to High–Performance Computing.” [Online]. Available:

http://www.shodor.org/media/content/petascale/materials/UPModules/beginnersGuideHP

C/moduleDocument_pdf.pdf.

[8] C. Cullinan, C. Wyant, T. Frattesi, and X. Huang, “Computing Performance Benchmarks

among CPU , GPU , and FPGA,” E-project-030212-123508, pp. 1–113, 2012.

[9] B. Schauer, “Multicore Processors–A Necessity,” ProQuest Discov. Guid., no. September,

pp. 1–14, 2008.

[10] AMD, “AMD OpteronTM 6000 Series Platform,” 2016. [Online]. Available:

http://www.amd.com/en-us/products/server/opteron/6000.

73

[11] Tilera, “TILE-Gx Processor Family – Product Brief,” Development, pp. 1–2, 2011.

[12] Y. Zhai, E. Mbarushimana, W. Li, J. Zhang, and Y. Guo, “Lit: A high performance massive

data computing framework based on CPU/GPU cluster,” Proc. - IEEE Int. Conf. Clust.

Comput. ICCC, 2013.

[13] J. Fang, A. Varbanescu, and B. Imbernón, “Parallel Computation of Non-Bonded

Interactions in Drug Discovery: Nvidia GPUs vs. Intel Xeon Phi,” Iwbbio, pp. 579–588,

2014.

[14] AMD, “AMD FireProTM S10000 High-Density, High-Performance Server Graphics.”

[Online]. Available: https://www.amd.com/documents/FirePro_S10000_Data_Sheet.pdf.

[15] S. Settle, “High-performance Dynamic Programming on FPGAs with OpenCL,” Ieee-

Hpec.Org, 2013.

[16] Altera, “STRATIX 10 FPGA AND SOC.” [Online]. Available:

https://www.altera.com/products/fpga/stratix-series/stratix-

10/overview.html?utm_source=Altera&utm_medium=press_release&utm_campaign=gen_

10.

[17] Xilinx, “UltraScale Architecture and Product Overview,” 2016. [Online]. Available:

http://www.xilinx.com/support/documentation/data_sheets/ds890-ultrascale-overview.pdf.

[18] “Programming of Coarse Grain Reconfigurable Platforms.” [Online]. Available:

http://xputers.informatik.uni-kl.de/papers/publications/Nageldinger4.pdf.

[19] R. Hartenstein, “Coarse grain reconfigurable architectures,” Proc. ASP-DAC 2001. Asia

South Pacific Des. Autom. Conf. 2001 (Cat. No.01EX455), pp. 1–6, 2001.

[20] A. Chattopadhyay, “Ingredients of adaptability: A survey of reconfigurable processors,”

User Model. User-adapt. Interact., vol. 2013, 2013.

[21] A. L. Bjorn De Sutter, Praveen Raghavan, “Coarse-Grained Reconfigurable Array

Architectures,” Handb. Signal Process. Syst. SE - 6, pp. 553–592, 2010.

[22] P. F. Carl Ebeling, Darren Cronquist, “RaPiD—Reconfigurable pipelined datapath,” Field-

74

Programmable Log. Smart Appl. New Paradig. Compil., pp. 126–135, 1996.

[23] R. W. Hartenstein, J. Becker, and R. Kress, “High-performance computing using a

reconfigurable accelerator,” vol. 8, no. November 1995, pp. 429–443, 1996.

[24] S. Copen and R. Reed, “PipeRench : A Reconfigurable Architecture and Compiler,”

Comput. 33, vol. 4, pp. 70–77, 2000.

[25] H. Singh, M. H. Lee, G. Lu, F. J. Kurdahi, N. Bagherzadeh, and E. M. Chaves Filho,

“MorphoSys: An integrated reconfigurable system for data-parallel and computation-

intensive applications,” IEEE Trans. Comput., vol. 49, no. 5, pp. 465–481, 2000.

[26] T. Miyamori and K. Olukotun, “REMARC : Reconfigurable Multimedia Array

Coprocessor,” IEICE Trans. Inf. Syst. 82, vol. 2, pp. 389–397, 1999.

[27] K. Choi, “Coarse-Grained Reconfigurable Array: Architecture and Application Mapping,”

IPSJ Trans. Syst. LSI Des. Methodol., vol. 4, pp. 31–46, 2011.

[28] B. Mei, “ADRES: An architecture with tightly coupled VLIW processor and coarse-grained

reconfigurable matrix,” F. Program. Log. Appl., vol. 53, no. 9, pp. 61–70, 2003.

[29] G. Ansaloni, P. Bonzini, and L. Pozzi, “EGRA: A coarse grained reconfigurable

architectural template,” IEEE Trans. Very Large Scale Integr. Syst., vol. 19, no. 6, pp. 1062–

1074, 2011.

[30] J. M. P. Cardoso and P. C. Diniz, Compilation Techniques for Reconfigurable Architectures.

2009.

[31] D. C. Cronquist, P. Franklin, S. G. Berg, and C. Ebeling, “Specifying and compiling

applications for RaPiD,” Proceedings. IEEE Symp. FPGAs Cust. Comput. Mach. (Cat.

No.98TB100251), 1998.

[32] R. Ferreira, V. Duarte, W. Meireles, M. Pereira, L. Carro, and S. Wong, “A just-in-time

modulo scheduling for virtual coarse-grained reconfigurable architectures,” Proc. - 2013 Int.

Conf. Embed. Comput. Syst. Archit. Model. Simulation, IC-SAMOS 2013, pp. 188–195,

2013.

75

[33] N. Jing, W. He, and Z. Mao, “Resource Constrained Mapping of Data Flow Graphs onto

Coarse-Grained Reconfigurable Array,” 23rd IEEE Int. SOC Conf. IEEE, pp. 260–265,

2010.

[34] G. Mehta, K. K. Patel, N. Parde, and N. S. Pollard, “Data-driven mapping using local

patterns,” IEEE Trans. Comput. Des. Integr. Circuits Syst., vol. 32, no. 11, pp. 1668–1681,

2013.

[35] A. Hatanaka and N. Bagherzadeh, “A modulo scheduling algorithm for a coarse-grain

reconfigurable array template,” Proc. - 21st Int. Parallel Distrib. Process. Symp. IPDPS

2007; Abstr. CD-ROM, 2007.

[36] Y. Guo and P. M. Heysters, “Mapping applications to a coarse grain reconfigurable system,”

Asia-Pacific Conf. Adv. Comput. Syst. Archit. Springer Berlin Heidelb., pp. 221–235, 2003.

[37] G. Lee, K. Choi, and N. D. Dutt, “Mapping multi-domain applications onto coarse-grained

reconfigurable architectures,” IEEE Trans. Comput. Des. Integr. Circuits Syst., vol. 30, no.

5, pp. 637–650, 2011.

[38] G. Lee, S. Lee, K. Choi, and N. Dutt, “Routing-aware application mapping considering

steiner points for coarse-grained reconfigurable architecture,” Lect. Notes Comput. Sci.

(including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 5992 LNCS,

pp. 231–243, 2010.

[39] R. Hartenstein, M. Herz, T. Hoffmann, and U. Nageldinger, “Mapping Applications onto

reconfigurable KressArrays,” Int. Work. F. Program. Log. Appl., pp. 385–390, 1999.

[40] H. Park, K. Fan, M. Kudlur, and S. Mahlke, “Modulo Graph Embedding : Mapping

Applications onto Coarse-Grained Reconfigurable Architectures,” Proc. 2006 Int. Conf.

Compil. Archit. Synth. Embed. Syst. ACM, pp. 136–146, 2006.

[41] H. Park, K. Fan, S. a. Mahlke, T. Oh, H. Kim, and H. Kim, “Edge-centric modulo scheduling

for coarse-grained reconfigurable architectures,” Proc. 17th Int. Conf. Parallel Archit.

Compil. Tech. - PACT ’08, p. 166, 2008.

76

[42] L. Chen and T. Mitra, “Graph minor approach for application mapping on CGRAs,” FPT

2012 - 2012 Int. Conf. Field-Programmable Technol., vol. 7, no. 3, pp. 285–292, 2012.

[43] B. Mei, M. Berekovic, and J. Y. Mignolet, “ADRES & DRESC: Architecture and compiler

for coarse-grain reconfigurable processors,” Fine-and Coarse-Grain Reconfigurable

Comput., pp. 255–297, 2008.

[44] B. Mei, S. Vernalde, D. Verkest, H. De Man, and R. Lauwereins, “DRESC: a retargetable

compiler for coarse-grained reconfigurable architectures,” IEEE Int. Conf. Field-

Programmable Technol. 2002. (FPT). Proceedings., pp. 166–173, 2002.

[45] H. D. M. and R. L. B. Mei, S. Vernalde, D. Verkest, “Exploiting loop-level parallelism on

coarse-grained reconfigurable architectures using modulo scheduling,” Comput. Digit. Tech.

IEE Proc., vol. 150, no. 5, 2003.

[46] B. R. Rau, “Iterative modulo scheduling: an algorithm for software pipelining loops,” Prof.

Eng., vol. 7, no. 21, pp. 63–74, 1994.

[47] V. H. Allan, R. B. Jones, M. Lee, J. Allan, and V. H. Allan, “Software Pipelining,” vol. 27,

no. 3, 1995.

[48] M. Ashraful and A. Tuhin, “Mapping Applications to Coarse-Grain Reconfigurable

Architectures Coarse- grained Reconfigurable Ar- Coarse-grained Reconfig- urable

Architectures Hartenstein surveyed the works done so far in the,” pp. 1–6, 2006.

[49] G. Venkataramani, W. Najjar, F. Kurdahi, N. Bagherzadeh, W. Bohm, and J. Hammes,

“Automatic compilation to a coarse-grained reconfigurable system-opn-chip,” ACM Trans.

Embed. Comput. Syst., vol. 2, no. 4, pp. 560–589, 2003.

[50] G. Theodoridis, D. Soudris, and S. Vassiliadis, “A Survey of coarse-grain reconfigurable

architectures and cad tools basic definitions, critical design issues and existing coarse-grain

reocnfigurable systems,” Fine-and Coarse-Grain Reconfigurable Comput., pp. 89–149,

2008.

[51] T. J. Callahan, J. R. Hauser, and J. Wawrzynek, “Garp architecture and C compiler,”

77

Computer (Long. Beach. Calif)., vol. 33, no. 4, pp. 62–69, 2000.

[52] E. Mirsky and a. DeHon, “MATRIX: a reconfigurable computing architecture with

configurable\ninstruction distribution and deployable resources,” FPGAs Cust. Comput.

Mach. 1996. Proceedings. IEEE Symp., pp. 157–166, 1996.

[53] G. I. of T. Eric VanHeest, Mitch Kispert, “WinTim32,” 1999. [Online]. Available:

http://users.ece.gatech.edu/~hamblen/book/wintim/.

78

APPENDIX A – ASSEMBLY CODES FOR PROPOSED ARCHITECTURE

This appendix gives the required information to write an assembly code for the proposed CGRA.

The assembly codes write by the Python language. The assembly codes should be covered all 47

bits of instructions.

Table Appendix A 1 gives all required bits that can be used in one instruction. For each word on

the right side of this table, there is a specific word to define its assembly language.

Table Appendix A 1-Instruction word in token state machine.

Bits Description

46-43 Operation

42-39 Condition

38 SALU select

37 Flag modification

36 Operand A(FIFO Bank/ SALU Buffer)

35 Deep Reading of Operand A

34-30 Address Operand A

29-26 Address deep reading Operand A

25 Operand B(FIFO Bank/ SALU Buffer)

24 Deep Reading of Operand B

23-19 Address Operand B

18-15 Address deep reading Operand B

14-12 FIFO bank or SALU destination

79

Table Appendix A 1-Instruction word in token state machine (continued).

Bits Description

11 Write to FIFO

10 Write as double address or choose the buffer

9-5 Result destination 1

4-0 Result destination 2

Bits 46-43 defines the operations. Table Appendix A 2 gives the operation assembly codes.

Table Appendix A 2-Operation Assembly word.

Bits 46-43 operation Assembly

0000 Addition ADD

0001 Subtraction Minus

0010 Multiplication Multiple

0011 Multiplication with truncation MuTrunc

0100 Shift Left Logic SLL

0101 Shift Right Logic SRL

0110 Shift Right Arithmetic SRA

0111 AND AND

1000 OR OR

1001 XOR XOR

1010 NOT NOT

80

Table Appendix A 2- Operation Assembly word (continued).

Bits 46-43 operation Assembly

1011 FLIP FLIP

Bits 42-39 as default are set to 0. Each FIFO bank is associated to two SALUs and they can be

defined by one bit (Bit 38). Table Appendix A 3 illustrates the corresponding assembly code for

each state of bit 38.

Table Appendix A 3- SALU Selection along with its Assembly code.

Bit 38 Description Assembly code

0 Select SALU that is located in left or upside of FIFO banks SaluLeftUp

1 Select SALU that is located in Right or Downside of FIFO banks SaluRightDown

Flag modification is set to 0 as a default inside instruction word. Bit 36 defines the operand A

whether it is in FIFO bank or SALU buffer (Table Appendix A 4).

Table Appendix A 4- Operand A and corresponding Assembly code.

Bit 35 defines whether the reading operand A from FIFO bank is normal or deep. In deep reading,

the data token is not removed from FIFO banks. It only makes a copy of data token (operand) and

sends it to the SALU. The corresponding assembly code for deep reading of operand A is “DeepA”.

As a default, this bit is 0 and the normal reading is performed.

Bits 34-30 are responsible for defining where is the operand A as given in Table Appendix A 5.

Bit 36 Description Assembly code

0 Operand A is located in SALU buffer OperandABuff

1 Operand A is located in FFO bank. OperandA

81

Table Appendix A 5- The address of operand A and corresponding assembly code.

Bits 34-30 Description Assembly Code

5B#00000 FIFO number 0 R0

5B#00001 FIFO number 1 R1

5B#00010 FIFO number 2 R2

5B#00011 FIFO number 3 R3

5B#00100 FIFO number 4 R4

5B#00101 FIFO number 5 R5

5B#00110 FIFO number 6 R6

5B#00111 FIFO number 7 R7

5B#01000 FIFO number 8 R8

5B#01001 FIFO number 9 R9

5B#01010 FIFO number 10 R10

5B#01011 FIFO number 11 R11

5B#01100 FIFO number 12 R12

5B#01101 FIFO number 13 R13

5B#01110 FIFO number 14 R14

5B#01111 FIFO number 15 R15

82

Bits 29-26 defines the address for deep reading as given in Table Appendix A 6. As it has been

mentioned earlier, the FIFO deeps are eight and thus; a user can access to each element of them

using the deep address.

Table Appendix A 6- deep reading address and assembly code.

Bits 29-26 Description Assembly Code

4B#0000 Element 0 Addeep0

4B#0001 Element 1 Addeep1

4B#0010 Element 2 Addeep2

4B#0011 Element 3 Addeep3

4B#0100 Element 4 Addeep4

4B#0101 Element 5 Addeep5

4B#0110 Element 6 Addeep6

4B#0111 Element 7 Addeep7

From bits 25- 15 are allocated to the operand B, the assembly codes are the same as operand A.

The only difference is where the ‘A’ is changed to ‘B’.

Bits14-12 determines the destination FIFO bank or SALU buffer. When the destination is the

SALU buffer and not the FIFO banks, these bits are used to decode the address to correspond each

buffer in SALU sides. The destination address for each decoder along with their assembly codes

are given in Table Appendix A 7 .

83

Table Appendix A 7- SALU Buffer as a destination with their assembly codes.

Bits14-12 Description Assembly codes

3B#000 Decoder Buffer 0 is the destination Decoder0

3B#001 Decoder Buffer 1 is the destination Decoder1

3B#010 Decoder Buffer 2 is the destination Decoder2

3B#011 Decoder Buffer 3 is the destination Decoder3

3B#100 Decoder Buffer 4 is the destination Decoder4

3B#101 Decoder Buffer 5 is the destination Decoder5

3B#110 Decoder Buffer 6 is the destination Decoder6

3B#111 Decoder Buffer 7 is the destination Decoder7

Since bits, 14-12 are used to determining FIFO bank as destinations. Table Appendix A 8 gives

corresponding assembly code to determine the destination address for generated data tokens

resulted by SALU.

Table Appendix A 8- FIFO bank destination with assembly codes.

Bits14-12 Description Assembly codes

3B#000 FIFO Bank Left from SALU side BankFIFOLeft

3B#001 FIFO Bank UP from SALU side BankFIFOUP

3B#010 FIFO Bank Right from SALU side BankFIFORight

3B#011 FIFO Bank Down from SALU side BankFIFODown

84

Bit 11 determines whether SALU wants to write in FIFO bank or not. To this end, there is assembly

code ‘WriteFIFO’ that forces ‘1’ to bit 11. Since the destination is not FIFO bank, it is not necessary

to write in the FIFO bank and then assembly code “NoWriteFIFO” is allocated to this.

“NoWriteFIFO” is forced ‘0’ to bit 11.

Bit 10 has two options: first, if the target destination is the FIFO bank and second if the target

destination is SALU buffer. For each option, the specific assembly code is assigned according to

Table Appendix A 9 and Table Appendix A 10.

Table Appendix A 9- Double address with its assembly code.

Bit 10 as write to FIFO bank Description Assembly Codes

1B#0 Result send to only one destination Default 0

1B#1 Result can send to two different destination BothAddress

When the address destination is SALU buffer, two buffers are assigned to each decoder that are

determined by bit 10. The user can send data tokens to left or right buffers of the predefined

decoder (by bits 14-12).

Table Appendix A 10 - select SALU Buffer and its assembly code.

Bit 10 as write to SALU buffer Description Assembly Codes

1B#0 Select Buffer Right of SALU BufferRight

1B#1 Select Buffer left of SALU BufferLeft

Bits 9-0 determines the destination addresses for which the assembly codes are equivalent to what

given in Table Appendix A 5.

There is three extra assembly command codes ‘Next’, ‘TSMNext’ and ‘NoToken’. To separate

TSM0-7 from each other, the command ‘Next’ is used. ‘TSMNext’ is used when the computing

fabric has more than one tile. ‘NoToken’ demonstrates that there are no more instructions in TSM.

85

Figure Appendix A 1 shows a simple code conversion from Python as source code to the assembly

codes acceptance to computing fabric. Evidently, each small tsm is composed of four instructions.

When one tsm is not programmed, it should be filled up with ‘NoToken’ and 'Next' command

separates the tsms.

 (a)

 (b)

Figure Appendix A 1- Simple example of create assembly code, a) Python language b) assembly

codes

86

APPENDIX B – WINTIM32

Figure Appendix B 1-Instruction formats and mnemonic names definition file by WinTim32

87

Figure Appendix B 2- Generated VHDL file for one TSM by WinTim

