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RÉSUMÉ 

Les architectures reconfigurables à large grain sont devenues un sujet important de recherche en 

raison de leur haut potentiel pour accélérer une large gamme d’applications. Ces architectures 

utilisent la nature parallèle de l’architecture matérielle pour accélérer les calculs. Les 

architectures reconfigurables à large grain sont en mesure de combler les lacunes existantes entre 

le FPGA (architecture reconfigurable à grain fin) et le processeur. Elles contrastent généralement 

avec les Application Specific Integrated Circuits (ASIC) en ce qui concerne la performance 

(moins bonnes) et la flexibilité (meilleures).  

La programmation d’architectures reconfigurables est un défi qui date depuis longtemps et pose 

plusieurs problèmes. Les programmeurs doivent être avisés des caractéristiques du matériel sur 

lequel ils travaillent et connaître des langages de description matériels tels que VHDL et Verilog 

au lieu de langages de programmation séquentielle. L’implémentation d’un algorithme sur FPGA 

s’avère plus difficile que de le faire sur des CPU ou des GPU. Les implémentations à base de 

processeurs ont déjà leur chemin de données pré synthétisé et ont besoin uniquement d’un 

programme pour le contrôler. Par contre, dans un FPGA, le développeur doit créer autant le 

chemin de données que le contrôleur. Cependant, concevoir une nouvelle architecture pour 

exploiter efficacement les millions de cellules logiques et les milliers de ressources arithmétiques 

dédiées qui sont disponibles dans une FPGA est une tâche difficile qui requiert beaucoup de 

temps. Seulement les spécialistes dans le design de circuits peuvent le faire. 

Ce projet est fondé sur un tissu de calcul générique contrôlé par les données qui a été proposé par 

le professeur J.P David et a déjà été implémenté par un étudiant à la maîtrise M. Allard. Cette 

architecture est principalement formée de trois composants: l’unité arithmétique et logique 

partagée (Shared Arithmetic Logic Unit –SALU-), la machine à état pour le jeton des données 

(Token State Machine –TSM-) et la banque de FIFO (FIFO Bank –FB-). Cette architecture est 

semblable aux architectures reconfigurables à large grain (Coarse-Grained Reconfigurable 

Architecture-CGRAs-), mais contrôlée par les données. En effet, dans cette architecture, les 

banques de registres sont remplacées par les FB et les contrôleurs sont les TSM. Les opérations 

commencent dès que les opérandes sont disponibles dans les FIFOs qui contiennent les 
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opérandes. Les données sont déplacées de FB à FB à travers les SALU tel que programmé dans 

la mémoire de configuration du TSM. Les résultats finaux sont sauvegardés dans les FIFOs. 

Ce projet de recherche se fonde sur les CGRAs et les Overlay Architectures (OEA), qui 

permettent aux concepteurs de profiter d’une architecture précompilée sur FPGA et encore 

fournir un moyen de configurer le système à un haut niveau. Nous proposons une méthodologie 

de conception pour implanter un algorithme sur un FPGA qui est préconfiguré avec un CGRA. 

L’algorithme de conversion nécessite un graphe de flux de données (DFG) comme entrée qui est 

typiquement le corps d’une boucle. Une quantité maximale d’opérations est traitée en parallèle 

et une nouvelle itération de la boucle est lancée le plus tôt possible (ASAP). Idéalement, ce 

traitement est fait avant que la boucle en exécution ne soit finie. Ceci est réalisé en utilisant des 

techniques de pipelinage logiciel inspirées de la technique d’ordonnancement itératif de Modulo 

(Iterative Modulo Scheduling). L’ordonnancement Modulo est modifié de manière à ce que les 

phases de placement et de routage soient intégrées. Dans l’architecture proposée, un tissu de 

calcul générique contrôlé par les données est connecté aux processeurs standards. En fait, la 

nouvelle architecture permet aux développeurs de contrôler, de recueillir et de gérer le flux de 

données sur les banques FIFO. Le développeur est aussi capable de répartir l’exécution de 

l’application entre les processeurs Microblaze et le TSM. Pour valider l’architecture et le procédé 

de conception proposées, nous avons développé un exemple illustratif dans lequel un processeur 

envoie une image en format RGB au tissu de calcul générique. Dans le tissu, l’image est 

transformée en format Y, Cr, Cb. Les résultats montrent que, grâce au contrôleur DMA entre la 

mémoire et le tissu, un gain de vitesse de 50 peut être atteint par rapport à une implémentation 

logicielle pure.  
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ABSTRACT 

Coarse-grained reconfigurable computing architectures have become an important research topic 

because of their high potential to accelerate a wide range of applications. These architectures 

apply the concurrent nature of hardware architecture to accelerate computations. Substantially, 

coarse-grained reconfigurable computing architectures can fill up existing gaps between FPGAs 

and processor. They typically contrast with Application Specific Integrated Circuits (ASICs) in 

connection with performance and flexibility.  

Programming reconfigurable computing architectures is a long-standing challenge, and it is yet 

extremely inconvenient. Programmers must be aware of hardware features and also it is assumed 

that they have a good knowledge of hardware description languages such as VHDL and Verilog, 

instead of the sequential programming paradigm. Implementing an algorithm on FPGA is 

intrinsically more difficult than programming a processor or a GPU. Processor-based 

implementations “only” require a program to control their pre-synthesized data path, while an 

FPGA requires that a designer creates a new data path and a new controller for each application. 

Nevertheless, conceiving an architecture that best exploits the millions of logic cells and the 

thousands of dedicated arithmetic resources available in an FPGA is a time-consuming challenge 

that only talented experts in circuit design can handle.  

This project is founded on the generic data-driven compute fabric proposed by Prof. J.P. David and 

implemented by M. Allard, a previous master student. This architecture is composed of three main 

individual components: the Shared Arithmetic Logic Unit (SALU), the Token State Machine 

(TSM) and the FIFO Bank (FB). The architecture is somewhat similar to Coarse-Grained 

Reconfigurable Architectures (CGRAs), but it is data-driven. Indeed, in that architecture, register 

banks are replaced by FBs and the controllers are TSMs. The operations start as soon as the 

operands are available in the FIFOs that contain the operands. Data travel from FBs to FBs through 

the SALU, as programmed in the configuration memory of the TSMs. Final results return in FIFOs. 

The present work builds on CGRAs, and Overlay Architectures (OAs), that allow a designer to 

take advantage of a pre-compiled FPGA architecture and still provide a way to configure the system 

at a higher level. We propose a design methodology to map an algorithm on an FPGA 
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preconfigured with a CGRA. The mapping algorithm requires a data flow graph (DFG) as input, 

typically the body of a loop. A maximum number of operations are processed in parallel, and a 

new iteration of the body loop is started as soon as possible, ideally before the completion of the 

current one, by using software pipelining techniques, inspired of Iterative Modulo Scheduling. 

Modulo scheduling is modified in a way that placement and routing phases are integrated to the 

procedure. In the proposed architecture, a generic data-driven compute fabric is interfaced to 

standard processors. In fact, the new architecture enables the user to control, collect and manage 

the data flow on FIFO banks. The programmer is also able to program an application split between 

Microblaze processors and TSMs. To validate the proposed architecture and design method, an 

illustrative example is developed in which a processor sends an RGB image to a processing fabric, 

where it is converted to Y, Cr, Cb. Results show that thanks to DMA between the memory and the 

fabric, a speedup of 50 are reached compared to a pure software implementation. 
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CHAPTER 1 INTRODUCTION 

Having billions of transistors on a single chip, the best way to design modern computing chips is 

to make it more parallel and configurable. General purpose processors have evolved to multicore 

chips, where each core is independent of the other cores, but shares memory resources. For 

example, the Xeon PHI 7120A processor has 61 embedded cores running up to 244 threads in 

parallel at 1.2GHz[1]. 

Graphics Processing Units (GPUs) offer thousands of cores running in parallel. However, to be 

more efficient, the same instruction must be applied to multiple data, i.e. single instruction, multiple 

data (SIMD) architecture. For example, the Nvidia K40 chip has 2880 cores leading to a peak 

performance of 4.3 TFLOPS for single precision arithmetic[2]. 

Both general purpose processors and GPUs are highly configurable devices, since they are founded 

based on the Von Neuman model. They benefit from more than 50 years of research and 

development in programming languages, libraries, and design tools, enabling computer scientists 

to rapidly design and prototype complex applications. 

However, mainstream processors are not necessarily the best targets for algorithms with high data 

dependencies and/or low latency constraints, since the applications must be transformed to fit the 

hardware. In such context, the best performances are achieved when the hardware is tailored to the 

algorithm, as with Application Specific Integrated Circuits (ASICs) or Field Programmable Gate 

Arrays (FPGAs). It is known that designing a complex chip is a long task reserved for experts in 

the field. Despite decades of research and development, which today enable some high-level circuit 

design, the need for experts and the long development times are presently the biggest obstacles to 

the use of FPGAs as mainstream processing devices. 

Coarse Grain Reconfigurable Architectures (CGRA) are intermediate solutions between 

mainstream processors and FPGAs. They are consisted of several units for the processing and 

exchanging of data with their neighbor units, which are typically organized as a mesh at very low 

level. Each unit can be programmed to implement a part of the application and route the data to 

other units. Thus, it is possible to tailor the hardware to the application, without the help of a 

hardware design specialist. CGRAs are good candidates for repetitive computations with high data 
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dependency. They are employed as coprocessors to accelerate loops and to let the main processor 

calculate control-dominant parts of an application. 

Although the architecture proposed by Allard et al. [3] (refer to pages 35-38 ) is similar to CGRAs, 

it is based on a data-driven mode of operation, i.e., the register banks are replaced with FIFO Banks 

(FBs) and the controllers are Token State Machines (TSMs). Thus, the operations start as soon as 

the operands are available in the FIFOs that contain the operands. The main advantage of this 

architecture [3] is that it results in a fast and simple implementation of a user-defined design 

implemented over a reconfigurable computing architecture. 

On the other hand, the available hardware resources increase with each new generation of complex 

hardware designs and designers should have access to these resources. To this end, designers 

require a strong knowledge of the hardware design.  

In fact, Allard’s architecture aims at effectively exploiting increasingly abundant resources to 

increase the performance of hardware. The improved performance is achieved by using dedicated 

hardware resources with the simplicity and flexibility of software development. Also, Allard et. 

al[3] introduced the concept of two different configuration levels. At the lowest level, a hardware 

design specialist assembles a dedicated CGRA, which is composed of building blocks, such as 

token-based ALUs, FIFOs, and sequences, i.e., the control path of a token machine. The circuit is 

then synthesized, placed and routed on an FPGA. At the highest level, computer scientists may 

program the token machines to implement an application. Thus, the architecture may offer many 

advantages, including reconfigurability, evolution, high (and low) level programming, and low-

level parallelism exploitation. 

Figure 1-1 shows the architecture proposed by [3]. As can be seen in this figure, the architecture 

includes three components: Shared-ALU (SALU), FBs and TSM. The architecture can be extended 

in both dimensions. All the computing and routing capabilities of the fabric are concentrated in the 

SALU, which is consisted of eight independent ALUs, their associated decoder, and one central 

router network. The decoders are used to establish connections between the FBs and ALUs to 

handle the token production-consumption. In addition, they send data tokens to the ALUs and get 



3 

 

 

 

back the results. Each decoder has two internal buffers (local accumulators) to temporarily store 

operands.  

Each ALU is controlled by its programmable TSM. TSMs contain the instructions, which include 

the address of the operands (local accumulator or FB), the type of operation (16 different arithmetic 

and logic operations are supported) and the address of the result that could be located in any of the 

FBs connected to the SALU or in a local accumulator.  

 

Figure 1-1- Reconfigurable architecture proposed by Allard et al. [3]© 2010 IEEE. 

However, the proposed CGRA has been elaborated with fixed applications and was not directly 

capable of supporting advanced features, such as running the application with new data at runtime. 

It is to be noted that the FIFO’s contents are charged once the architecture is synthesized. If the 

FIFOs need to be filled up with a new data, the CGRA should be re-synthesized. Given this, the 

application of the proposed CGRA is restricted to executing a few input data in parallel. In addition, 

at the highest level, this architecture still requires an auxiliary method to take advantage of the 

simplicity and flexibility of software development. In fact, mapping an application manually with 

thousand operations on the CGRA was essentially an intractable process.    

Due to the abovementioned challenges, this work intends to address the problem of mapping 

complex applications in the Allard et al. architecture.  
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At a high level, mapping a complex data flow graph with hundreds or thousands of nodes onto the 

Allard et al. architecture is a complex, tedious and error-prone task. This work proposes an 

algorithm to automate such mapping. Furthermore, the CGRA is enhanced regarding supporting 

runtime executing applications. The proposed architecture is consisted of Allard et al. architecture 

(CGRA-based) that is tightly coupled with a processor-based IP (Microblaze).  

In the proposed architecture, CGRA is defined as a custom peripheral Intellectual Properties (IP). 

This IP is attached to the Processor Local Bus (PLB), where the Microblaze is defined as a 

microprocessor. To run the applications with a high data throughput, a Central Direct Memory 

Access (CDMA) is employed. Using the CDMA, the CGRA’s FIFO banks could dynamically be 

recharged with new data tokens. Then, it leads to support runtime execution applications through 

CDMA by recharging embedded FIFO banks inside the CGRA. 

The new architecture makes it possible to analyze the application code to separate the non-critical 

from sequential or controller application code. The users of this architecture will be able to 

determine what section of the application should be executed on the CGRA and the Microblaze. 

The loops are executed on the CGRA as computation-intensive kernels while the Microblaze can 

execute the sequential code.  

In fact, the new architecture enables the user to control, assemble and manage the data flow on 

FIFO banks. The programmer is also able to program both Microblaze processors and Token State 

Machines. The proposed architecture provides a simple and fast method for programmers enabling 

the runtime execution of the applications on the hardware at high abstraction level implemented 

through software.  

The contributions of this work can be summarized as:  

 Introducing an automated mapping of the application on proposed CGRA to facilitate the 

implementation of algorithms that are executing over that CGRA. 

 Proposing a reconfigurable architecture model to manage, control and collect data tokens 

set to the CGRA through a high-level language (C/C++) supported by software (Software 

Development Kit (SDK)). These modifications on data tokens executing over the hardware 
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are possible at run time without a need to repeat synthesizing, placing and routing. Ease-

of-use and flexibility of the proposed architecture provide an opportunity to support 

applications requiring dynamic adaptation. 

This work is organized as follows: in Chapter 2, a literature review is done to clearly identify the 

subject and describe exiting mapping algorithms in reconfigurable architectures based on CGRA 

as well as describing the architecture proposed by Allard et al. In Chapter 3, a solution to automate 

the mapping of applications on the CGRA is proposed in detail . In addition, a new architecture is 

explained in detail to support runtime applications on existing CGRA. 

In Chapter 4, experimental results are presented. Fast Fourier Transformation (FFT) and matrix 

multiplication applications showed that the proposed automated methodology could lead to high 

throughput and/or low latency within a reasonable design time. The proposed architecture was 

elaborated, synthesized, placed and routed on a Xilinx Virtex-5 FPGA using suitable tools. In 

addition, the runtime matrix multiplication result showed that the proposed architecture could lead 

to a high throughput.  
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CHAPTER 2 STATE-OF-THE-ART 

2.1 Introduction 

The demand for high-speed accelerator devices or computing architectures to perform a 

computation has significantly risen regarding. High-Performance Computing (HPC) architectures 

is a suitable choice to address the demands mentioned above. HPC is used to solve complex science 

problems that need high bandwidth, low latency, and high computing capabilities. 

ASIC and DSP processors are built based on dedicated hardware that have been established in this 

market. The demand for applications that could handle large real-time data streams creates new 

demands, such as having general purpose microprocessors and more powerful FPGAs. However, 

programming the FPGAs is not an easy task, since the programmer must have strong knowledge 

on low-level design using low-level languages, such as VHDL and Verilog. The high-level 

synthesis is an automated design process to generate a register-transfer level design from an 

algorithmic description of a desired behaviour. Therefore, high-level synthesis facilitates the 

programming of the digital systems, such as FPGAs. The high-level synthesis includes three 

important tasks that are scheduling, allocation, and binding to form the complete control data path 

and implement it onto the hardware. Scheduling determines the cycle that an operation can be 

executed. The most famous scheduling algorithm are: list scheduling (ASAP, ALAP), force-

directed, time and resource constrained scheduling, and integer linear programming. The 

Allocation process determines the appropriate number of the processing unit, storage, and 

interconnection units. Finally, the binding connects placed and scheduled operations according to 

their data dependencies. Walker et.al[4] introduced a tutorial for the scheduling problem which is 

used by the high-level synthesis concept.   

In this section, we will first describe the mainstream processors for high-performance computing 

architectures, such as CPU, GPUs, FPGAs, and CGRA. The most popular CGRAs, such as Rapid, 

rDPA, PipeRench, MorphoSys, REMARK, ADRES, EGRA, and a mesh of parallel computing and 

communicating nodes are then studied. We will also present the available programming methods 
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to compile REMARK, MorphoSys, PipeRench and RaPiD architectures and explain the state-of-

the-art methods in mapping applications on the CGRAs.  

Modulo scheduling problem will be addressed in the following section as the most popular method 

in mapping application onto CGRAs. Finally, the summarized mapping applications onto CGRAs 

will be presented in two different tables at the end of this section. 

2.2 High performance computing architectures 

Hardware technologies are very important since they accelerate HPC applications. Based on the 

quest of HPC, the following components are used as HPC hardware:  (i) central processing units 

(CPUs) that are taking multiple processor cores into account for parallel computing; (ii) graphics 

processing units (GPUs) that process huge data blocks in parallel ; (iii) Hybrid CPUs/GPUs 

computing that is a very common solution for supercomputers, as well as its capability  for desktop 

computers and (iv) Field-Programmable Gate Arrays (FPGAs) that are also very useful for a certain 

class of demanding applications. 

Rapid growth and development of complex computation require high-performance computing 

(HPC) hardware. HPC is used in parallel processing techniques to solve complex engineering 

problems needing high bandwidth, high computing capability and low latency. Because of this 

growth, it is impossible to reach high-performance computing by traditional computing systems 

that contain only one CPU. To reach to higher performance, the HPC utilizes a combination of 

different hardware platforms such as CPUs, GPUs and FPGA[5], [6] that will be discussed in the 

following.  

2.2.1 Central Processor Unit (CPU) 

CPU is a vital part of a computer and contains two essential components, ALUs and Control Units 

(CUs). The ALU manages the arithmetic and logical operations, whereas CUs can access to the 

memory to read and execute the instructions[7], [8]. The design of CPU is based on the prefetching 

and pipelining architecture. A computer architecture that uses this method facilitates fetching the 

instruction before the current instruction ends and consequently, the throughput of instructions 
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increases. In order to decrease the required time to execute a program and to improve the high-

performance computers, the Reduced Instruction Set Computer (RISC) is used in CPU design. 

Utilizing RISC may increase the number of internal registers inside the CPU in a way that the data 

flow pipelining will be improved [7]. A brief history of CPU progress is studied in the following.  

The first microprocessor was emerged by Intel, 4-bit 4000, in 1970. This chip contained 2,300 

transistors with the capability of executing 92,000 instructions per second[8], [9]. Shortly, Intel 

came with new innovations in CPU evolution in 8008 and 8080. Over time, the new evolution of 

CPU is continually developed, and others companies, such as AMD and Motorola introduced their 

products as a competitor to Intel. In 1993, one of the most popular CPUs called “Pentium” was 

introduced with 60 MHz clock frequency and 100 millions of instructions per second. The 

evolution on the Pentium continued until 2008, and both Intel and AMD introduced new generation 

models of CPU. Intel has developed its product and introduced the first CPU, which had 2 billion 

transistors [7]–[9].  

According to Moore’s law, the number of transistors that could be placed inside a chip is restricted 

and is approximately doubled every two years. However, available single core CPU may not 

respond to new applications, since they require to be operated at high speed with higher 

performance without lowering the price. Therefore, the competition of producing CPUs operating 

at higher frequencies and high performance inside one core has reached a plateau.  

The computer architects reached a new approach in order to have better performance; moving the 

technology towards the multicore instead of using only one core inside a chip. A multicore 

processor often runs in slower frequencies than one single core, but with an increased calculation 

throughput. The term “multicore” refers to an integrated processor including two or more 

processors attached in order to increase the performance via parallel processing. In parallel 

processing, many calculations are performed at the same time and thus, the large problems can be 

solved by breaking them into several smaller parts and executing each concurrently[7]–[9].  

The multicore processor can execute multiple instructions at the same time in order to increase the 

speed by high parallel computing algorithms implemented in software. With the use of parallel 

computing, large problems may be solved faster. 
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In the following paragraph, the available multicore processors by Intel, AMD and Tilera will be 

discussed. AMD Opteron 6000 series processors are based on multicore processors (containing 4, 

8, 12, and 16). These series of processors support quad-channel memories in order to achieve high 

bandwidth amount to 51.2 GB/s [6], [10]. The Tilera family processors contain 16 to 100 cores 

based on Tilera’s iMesh on-chip network that are optimized for networking, video and cloud 

applications. Each core consists of 64-bits very long instruction level. The mesh interconnection 

technology used in Tilera is based on two modules. First module is used for streaming applications 

and the second module in memory communication to reach high performance shared memory[11]. 

The first high-performance architecture of Intel was introduced by Xeon E5 family that supports 

up to 8 cores with 20 MB shared memory[1]. They have also developed high-performance 

computing and introduced a new Xeon family. This new generation of Intel is based on multicore 

processors that extract a good performance from high parallel computing called Intel Xeon Phi, 

which is based on Intel Many Integrated Core architecture. Intel Xeon Phi coprocessors are PCI 

Express cards that enable higher performance gains for parallel tasks. Intel Xeon Phi coprocessors 

provide up to 61 cores, 244 threads and  1.2 teraflops (Floating Point Operations per Second).These 

coprocessors are categorized within three main product families; Intel Xeon Phi coprocessor 3100, 

Intel Xeon Phi coprocessor 5100, and Intel Xeon Phi coprocessor 7100. 

2.2.2 Graphical Processor Unit (GPU) 

GPU has recently become an influential coprocessor as a general purpose processor. GPUs are 

more efficient to perform parallel processing than CPU. This superiority is due to the basic nature 

of the GPU based on parallel data architecture and programmable technology[6][12]. GPUs are 

designed to accelerate demonstration and processing of visual images on a graphical output device. 

GPUs can process and display millions of pixels, simultaneously, and their design objective was 

to assist the video processing on devices, such as personal computers, cell phones, , etc.[7]. Design 

architects employ the natural properties of GPU to solve the complex scientific problems via 

general purpose processors. The general purpose GPUs are currently used in various HPC 

application domains such as medical imaging, bioinformatics, and embedded systems and are an 

ideal option for accelerator devices for massive data-parallel processing [12].  
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The programming model of GPU is based on a scalable processing array that consists of single 

instruction multiple threads having several stream processors. There are several memory spaces in 

GPUs, such as global and local memory. The global memory is accessible by all cores, and local 

or shared memory is related to each microprocessor[13]. The 1990's years were the beginning of 

GPUs by the introduction of 86C911 card by S3, which was one of the first standards for the GPU 

industry. Evolution of GPUs continued to two-dimensional graphics processing in 1990's up to 3D 

processing graphics processing, which are used in lower-end laptops today[8]. AMD and NVIDIA 

introduced several models of GPUs, and each one has specifically improved characteristics 

compared to the previous versions. The newly developed model of GPU called Tesla K80 that was 

introduced by NVIDIA and comprised 24 GB memory and up to 2.91 TFLOPS double precision 

performance with 480GB/s bandwidth. In fact, it consists of two GPUs placed inside one packet, 

where each GPU has 2496 cores [14]. Tesla K80 is ideal for high-performance computing 

accelerator that requires massive data throughput in single and double precision mode. AMD 

designed AMD FirePro S10000, and it has 3584 stream cores with the accuracy of 1.48 TFLOPS 

of double precision or 5.91 TFLOPS of single precision[14]. 

2.2.3 Field Programmable Gate Array (FPGA) 

FPGAs are reconfigurable integrated systems and are semiconductor devices consisted of many 

logic blocks linking together through programmable routing networking, embedded memory block, 

and digital signal processing blocks. The logic block is the main component of FPGAs that is 

implemented in a Lookup Table. LUTs contain a small attached memory that is programmed for 

the output logic based on the inputs. FPGAs’ resources can be configured and linked together in 

order to create custom instruction pipeline to determine which data is processed.  On the other 

hand, in CPU and GPU topologies the data path are fixed [8], [15]. 

 FPGA is highly based on high-level parallelism and is a perfect choice for implementing a portion 

of the application that requires extensive parallelism. Xilinx and Altera are two well-known 

companies to develop FPGAs. Stratix 10 is the newest FPGA introduced by Altera. Stratix 10 

device architecture was manufactured on the Intel 14 nm Tri-Gate technology that provides the 

highest performance and more power efficiency. Stratix 10 SX SoCs hard processor system with 
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64 bit quad-core ARM Cortex-A53 processor. The debug tools and heterogeneous advanced 

languages such as OpenCL developed by Altera SDK as design environment facilitate the 

application implementation on FPGA [16].  

Xilinx Ultra Scale architecture is another high accelerator unique device that provides high-

performance, high-bandwidth and low latency. It should be noted that the ultra-scale devices are 

suitable for processing massive data flows, since they have high bandwidth and low latency [17].  

2.2.4 Coarse-Grained Reconfigurable Architecture (CGRA)  

Based on granularity, reconfigurable computing architecture can be divided into two categories: 

fine-grained and Coarse-Grained Reconfigurable Architectures [18], [19]. 

CGRAs are indicated as application-specific reconfigurable devices or embedded FPGAs. CGRAs 

are introduced to tackle the disadvantage of Fine-Grained Reconfigurable Architectures (FGRAs) 

for computing application. Some disadvantages of FGRAs are the configuration time, routability 

and logic granularity. Logic granularity means that the architecture for FGRA is based on logic 

elements and is not suitable to handle complex signal processing and multimedia computations. 

The reconfiguration of FGRA is performed at bit-level; therefore the logic blocks are required to 

operate wide data path, and its routing path may have a huge wide range and poor routability. 

CGRA operates at the multiple-bit level. Therefore, it has less configuration time than FGRA [20], 

[21]. 

CGRAs are consisted of an array of FUs interconnected by a mesh topology network and register 

files are scattered among the CGRA. Some key characteristics of CGRAs include size, node 

functionality, topology, and register file sharing. The size refers to the number of FUs that can vary 

(e.g. 64 FUs); they are arranged as an array of 8×8. The functionality of each FU can be determined 

to execute an arithmetic or logic operation, such as addition, subtraction or multiplication. There 

are several configuration networks topology to provide interconnection between FUs. For example, 

each node can be connected to its four orthogonal or eight diagonal neighbors. CGRAs can include 

a local memory. The FUs have access to load or store data. Fine-grained architecture is based on 

bit-level, and CGRA operates at multiple-bit data paths. The size of configuration bit stream of 
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CGRA is smaller than FPGA and thus, it has a shorter configuration time. The CGRA is becoming 

an appealing option, since it consists of a large number of computation units with lower cost, power 

efficiency, and high flexibility. In addition, CGRA is capable of being programmed, i.e. the 

intensive computational kernels can be mapped to it. It should be mentioned that the CGRA has 

been used in high performance embedded system [18], [19], [20], [21]. 

2.3 Coarse-Grained Reconfigurable Architectures  

This section introduces the most popular architecture for CGRAs.  

2.3.1 Reconfigurable Pipelined Datapath (RaPiD)  

RaPiD is a coarse-grained field-programmable that can perform the computational data path as a 

pipeline. RaPiD consists of ALUs, multiplier, register files and local memories, which can be 

configured linearly over a bus. These units are interconnected and controlled via a combination of 

static and dynamic signals. RaPiD has a linear data path that is an alternative approach with 2-D 

mesh interconnection of PEs. The structure of data path in RaPiD is based on FUs, which are 

connected to the nearest neighbor fashion[22]. 

2.3.2 Reconfigurable data path array (rDPA)   

The Xputer architecture was one of the first research efforts in the coarse-grained field 

programmable hardware. Reconfigurable Data Path Array is a reconfigurable device based on 

field-programmable, which has 32-bits arithmetic logic unit. The rDPA is coarse-grain and consists 

of a small array called Unit Data Path. Each reconfigurable ALU is also configured by several 

numbers of rDPAs and can execute some operators of C language as an integer or fix-point data 

types up to 32-bits length. The mesh network connection is used as interconnection network 

between rALU, global bus and the bus memory[23].  

2.3.3 PipeRench  

The PipeRench architecture class consists of a set of physical pipeline stages so-called stripes. Each 

stripe is made up of the Interconnected Processing Elements (PEs), which contain ALUs and 
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register files. PEs can access to a global bus and receive data from other register files from the 

previous stripe or the current state through an interconnection network. Meanwhile, each ALU 

comprised of LUTs plus some circuits like carry chains and zero detection. In PipeRench the aim 

is to analyze the application’s virtual pipeline to map the physical pipeline stage to achieve the 

maximum execution throughput. Figure 2-1 shows the architecture of PipeRench[24]. 

Figure 2-1-PipeRench Architecture [24]©2000 IEEE 

MorphoSys is a reconfigurable computing system, which contains a reconfigurable processing unit 

(as an array of Reconfigurable Cells), a general purpose processor (RISC), and a high bandwidth 

memory interface. The RCs are interconnected as a 2-D mesh topology and are also coarse-grained. 

The general processor can control the operation of the RCs. The high-bandwidth interface consists 

of streaming buffers to transfer data between external memory and RC array. The main component 

of MorphoSys is an 8×8 RC array, shown in Figure 2-2[25].  
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Figure 2-2-MorphoSys reconfigurable computing[25] © 2000 IEEE 

2.3.4 Reconfigurable Multimedia Array Coprocessor (REMARK) 

REMARK is a reconfigurable coprocessor that is tightly coupled to the main RISC processor. 

REMARK is designed to accelerate specific application domains, such as multimedia and 

video/Image processing. It consists of a global control unit of ALU and an 8×8 array programmable 

logic element called Nano processors. Each Nano processor has a 16-bit data path. The 

configuration for each Nano element is stored in 32-instruction RAM. Each Nano processor can be 

connected to the four adjacent Nano processors via dedicated connections. The executions of Nano 

processors are determined by input signals from the control unit. The input signals can directly 

configure the instruction for each Nano processor using the main processor. Figure 2-3 shows the 

architecture for REMARK[26][27].  
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Figure 2-3-REMARK Architecture [26] © 1998 IEEE. 

2.3.5 Architecture for Dynamically Reconfigurable Embedded System 

(ADRES)   

The ADRES consisted of a 2-D reconfigurable architecture and comprised of two parts, which 

couples a Very Long Instruction Word processor and a coarse-grained reconfigurable matrix. The 

ADRES contains many FUs and register files which are connected via interconnected mesh 

topology. The FUs can execute the operation at world-level bits and RFs store the intermediate 

data. For VLIW processor, there are several FUs connected through multi-port register files. The 

reconfigurable matrix comprised of many reconfigurable cells that contain FUs along with RFs. 

FUs can be heterogeneous and also support the predicate operation[28].  

2.3.6 Expression-Grained Reconfigurable Arrays (EGRA)  

EGRA is a platform for the exploration of different designs of CGRA. The EGRA structure is 

organized as a mesh that consists of three different types of cells i.e. reconfigurable ALU cluster, 

memories, and multipliers. RACs include heterogeneous arithmetic and logic capabilities to 

support the complex computation of entire subexpression. Each Cell is connected to its four 
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neighbors and also horizontal-vertical buses. One control unit is instantiated in external of mesh to 

manage each cell. The architecture for 5×5 tiles of EGRA architecture is shown in Figure 2-4[29].  

 

Figure 2-4-EGRA Architecture[29] ©2010 IEEE 

2.3.7 A mesh of parallel computing and communicating nodes 

The present work is built upon the architecture proposed by Allard et al.[3].The architecture is 

similar to CGRAs, but it is data-driven, i.e., the register banks are replaced by FIFO Banks (FBs), 

and the controllers are Token State Machines (TSMs). Thus, the operations start as soon as the 

operands are available in the FIFOs that contain the operands. 

The proposed computing fabric architecture by [3] is comprised of three individual configurable 

modules i.e. Shared-ALUs, token state machine, and FIFO Banks. The proposed fabric architecture 

5×5 is shown in Figure 2-5. As can be seen in this figure, the architecture can be extended in both 

dimensions. All the computing and routing capabilities of the fabric are concentrated in the SALU, 

which is consisted of eight independent ALUs, their associated decoder and one central router 

network, as illustrated in Figure 2-6.  
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Figure 2-5- CGRA Proposed by Allared [3] © 2010 IEEE 

 

 

Figure 2-6-The architecture of the SALU [3] © 2010 IEEE 

The decoder is used to make the connection between FBs and ALUs. Decoder sends the data token 

to ALUs to execute the operation. Also, each decoder has two internal buffers to store the operands, 

temporarily. In order to perform an operation, one operand could come from the adjacent bank, and 

another one could come from an internal buffer. After executing the operands, the ALU sends the 

result to the decoder. Thus, the decoder will subsequently forward the result to its final destination 
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through the network. All routing decisions are performed through the router network. In fact, the 

network router is the vital element of SALU that allows carrying out all data tokens to their 

destination according to their respective order. 

The network can accept eight tokens per cycle and return the same number to different destinations. 

The network router consists of six distinct routers with two different types called type1 and type2. 

Figure 2-7 shows the block diagram of router type1 and type2. The left side of router type1 connects 

to the ALUs and router type2. The output of router type1 connects to the ALUs, FIFO Banks, and 

router type2. While the router type 2 only has communication with router type1.  

 

Figure 2-7- Schematic of: a) router type1:router1_0 , b) router type 2: router 2_0 [3] © 2010 

IEEE 

Each type1router is associated with one side of SALU. In addition, the type 1 router has no contact 

with other type1, yet they can access to router type 2 to send data token to different paths. A simple 

round-robin algorithm is used for the network router to send all data token to their destination. The 
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block diagram of router network is shown in Figure 2-8. In this architecture, routing is performed 

through the central router network. The network can accept eight tokens per cycle and return the 

same number of tokens to their destinations. 

 

Figure 2-8-Central Router Network [3] © 2010 IEEE 

A token state machine is a program unit that stores the required instruction tokens according to a 

specific application. Instruction can be used in order to control the transmission data tokens 

between the SALU and RFs. TSM represents the direct interface between the user and the fabric. 

The instructions must contain all the necessary information to choose the operands, operations, 

destination, and SALU. Each TSM has eight independent parallel small state machines that each 

pair corresponds to one FIFO bank. 

Figure 2-9 shows the block diagram of a TSM. A FIFO Bank represents the system’s memory, 

which is connected to the two different modules of SALU and TSM. The synchronization by data 

is the foundation of the architecture, which happens by using data token. FB manages all the traffic 

required to route the data token and instructions to SALU. Furthermore, it is possible to make 

concurrent write and read of data tokens. Each FB consists of 16 independent register files R0 to 

R15.  
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The TSM determines the data path and register file. The data token and instruction should be 

transferred to specified SALU through FBs.  

 

 

Figure 2-9-Block Diagram of a TSM [3] © 2010 IEEE 

2.4 Programming of most popular CGRAs 

This section gives the information about the programming of some CGRAs.   

2.4.1 Programming REMARK coprocessor 

REMARK coprocessor is tightly coupled to a host processor. The programming environment 

allows programming of both host and coprocessor concurrently. REMARK programming 

environment is comprised of the REMARK global instruction assembler and the Nano instruction 

assembler. The GCC compiler programs the host processor. The global instruction assembler 

begins with global assembly code and generates configuration data and label information. The 

Nano instruction begins with Nano assembly code and generates the configuration code. Due to 

utilizing the configurable REMARK architecture, the programmer attaches REMARK assembler 

instruction into the C program. Using REMARK assembler instruction, the assembled code for the 

host processor and binary code for REMARK instruction are generated.  Finally, the GCC compiler 

is used again to generate executable code which includes the host processor and the global and 

Nano configuration data[18][21].  
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2.4.2 Programming MorphoSys coprocessor 

MorphoSys uses GUI-based design tools to compile the application for reconfigurable array and 

host processor. The programmer has manually to separate the input code between the host 

processor and reconfigurable array. GUI-based includes mView, mLoad, and MCC. The mView 

has been developed to help the designer in mapping application to the reconfigurable cells. The 

mView can operate in two modes, programming mode or simulation mode. Based on both modes, 

one context file is generated by mView that represents the user-specific application for each cell. 

For system simulation, each application should be coded into the context words. This context word 

generates by mLoad using the input file from mView. The MCC is a prototype C language compiler 

that has been developed to compile code for MorphoSys. After partitioning the code between the 

host processor (TinyRISC) and the RC arrays, the MCC generates the instructions for TinyRISC 

processor. These instructions can control the RC array execution for parallel 

computation[18][27][25].  

2.4.3 Programming PipeRench Architecture 

The PipeRench compiler maps computations described in a dedicated intermediate single-

assignment language so-called DIL into the PipeRench. As mentioned earlier, the PipeRench made 

up of columns of pipeline stages and the model of the configuration of computation stage which 

can use the execution of the next stage in the current stage. DIL can be observed as a language to 

exhibit an intermediate representation of high-level language description such as C. It can also be 

used to describe pipelined combinatorial circuits. The compiler employs the same internal 

representation to perform synthesis, optimization and place and route. The compiler constructs a 

hierarchical acyclic data flow graph as an intermediate representation of the application. The DFG 

has nodes and edges where nodes represent the operations and edges represent the operands. After 

the generation of global application’s DFG, the compiler does some optimizations over DFG; such 

optimization includes traditional compiler optimization, for example, common subexpression 

elimination, algebraic simplification, and dead code elimination. The placement and routing phase 

is performed via DFG by a deterministic linear-time algorithm which is based on list 

scheduling[24]. 
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2.4.4 Programming RaPiD Architecture 

The programming of RaPiD performs using RaPiD-C, a C-like a language to help the programmer 

to a map of high-level computation description to the RaPiD architecture. RaPiD-C allows the 

programmer to specify the parallelism, data movement, and partitioning. The mechanism Wait and 

Signal are used by RaPiD-C for synchronization and assign right data into the RAM [30], [31]. 

2.4.5 Different techniques of the mapping applications on the CGRAs 

This section provides a brief study of the state-of-the-art methods in mapping applications on the 

CGRAs. 

Ricardo et al. presented a Just-In-Time module scheduling for the mapping application onto 

CGRA. Their proposed algorithm combines three distinct methods such as a mapping algorithm, a 

crossbar network, and virtual coarse-grained reconfigurable architecture. A module scheduling 

algorithm is used in the mapping algorithm to map loops into virtual CGRA. The algorithm is based 

on a greedy heuristic, and virtual CGRA is a layer on top of FPGA. They have also proposed a 

CGRA based on crossbar network instead of mesh topology network [32].  

The resource constrained mapping of DFG onto CGRA has been presented by Naifeng. The 

resource constrained mapping problem is formulated using ILP; the produce optimal result is 

created by ILP for the mapping of the DFG onto the CGRA. In order to accelerate the problem-

solving, they have also proposed a heuristic algorithm by using the maximum flow minimum cut 

algorithm for practical use and large problem[33].  

In data-driven mapping using local patterns presented by Gayatri, to accelerate the mapping 

application on to CGRA, a database of an example of high-quality mapping has been used based 

on a search tree. The depth of search tree is reduced using placing pattern of nodes instead of single 

ones. The anytime A* algorithm proposed in this research to find a good solution and improve that 

solution to place a node on the CGRA. Anytime A* is a greedy algorithm that provides a solution 

within certain bound to solve the problem of mapping of DFG on to CGRA. To solve the problem 

mentioned above, they have also used the Anytime Multiline Tree Rollup method in which they 

try to keep all solution paths diverse to ensure that results from previous steps are stored to avoid 
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repetition and traversing path. They have claimed that their proposed method outperforms the 

simulated annealing algorithm to placement and routing nodes onto CGRA[34].  

Akira et.al have proposed modulo scheduling algorithm to compile loops in a program onto CGRA. 

Their algorithm consists of resource reservation phase and scheduling algorithm. The resource 

reservation phase guarantees the resources needed at the steady state such as FUs consumed by 

operation and routing resources. Resource-aware placement algorithms were proposed to shorten 

the solution time. In order to map an application onto target architecture, a compact graph has been 

used in [35].  

Yuanqing has proposed an algorithm to map applications written in a high-level language program 

such C onto CGRA. His proposed algorithm contains 4 phases such as translating source code to a 

control data flow graph, task clustering and ALU data path mapping, scheduling and resource 

allocation. In the first phase, the input C program translated into CDFG and some optimization and 

simplification perform on the CDFG. In the second phase, the CDFG is partitioned into several 

tasks to assign them on to ALU. In the third phase, the clustered graph is scheduled and mapped to 

an unbounded number of fully connected ALUs. Finally, the last phase, the scheduled graph in 

prior phase is assigned to ALU and in the phase, the other resources such as buses, register, 

memories, etc. are assigned[36].  

A routing-aware mapping algorithm has been presented for CGRA by Ganghee. An integer linear 

programming has been considered for Steiner point routing, i.e., for optimal map application onto 

CGRA instead of spanning tree based routing. In addition, a fast heuristic mapping algorithm for 

CGRA that is based on routing aware and incorporated of Steiner point has been presented. The 

heuristic algorithm contains two phases: list scheduling and quantum-inspired evolutionary 

algorithm. Using list scheduling the constructed CDFG from the application is scheduled with the 

given resource constraint to get the initial solution and determine the priority of the node. Dijkstra 

algorithm is used to find the shortest path between two PEs. The QEA is like a genetic algorithm, 

and it evaluates each case to reach the best answer of mapping CDFG on to CGRA[37], [38]. 

Mapping application onto reconfigurable KressArrays proposed by Hartenstein. KressArrays 

consists of a mesh of a PEs which is also known as reconfigurable data path units. The application 



24 

 

 

 

written in a high-level programming language are placed and routed on the rDPUs using simulated 

annealing. A given data path would place and routed on the hardware using simulated annealing 

based mapper [23][39].  

Hyunchul proposed a software pipelining technique for CGRA that leverages module graph 

embedding referred to graph embedding from graph theory. To place the operations of loop body 

of the application on CGRA, they have presented three dimensions of CGRA that two of them are 

related to the FUs and third dimensions assigned to time slots. Module scheduling performed with 

each set of the operations which are located in the same level of DFG. Three-dimensional 

scheduling grid is filled for each group of scheduled operation by the skew manner in considering 

with restricted FUs and time slot available. Also, some cost functions are defined between pair 

DFG of nodes to reduce the routing path and optimize place and route. These functions are routing 

cost, affinity cost, and position cost. Routing cost guarantees that producers and consumers are 

placed close to each other. Affinity cost ensures that the producers with common consumers in 

DFG are placed together. Finally, position cost ensures that the operations are left-justified on the 

set of appropriate resources[40].  

EMS for CGRA is a research issue in continues of previous work of Hyunchul. Modulo scheduling 

is a technique in software pipeline of loops to exploit the parallelism of the CGRA. EMS tries to 

perform the routing of the nodes instead of place nodes first and routing paths followed by 

placement. During the routing process, if there is a path from the source to the destination of DFG 

of nodes then placement is done after the routing[41].  

Chen has proposed minor graph approach for mapping application onto CGRA. The CGRA 

mapping problem has been formalized as a graph minor of the module routing resource graph 

representing the CGRA resources and their interconnects [42].  

A retargetable compiler, known as Dynamically Reconfigurable Embedded System Compiler 

proposed by Mei. He proposed a module scheduling algorithm based on simulated annealing to 

placement and routing operands on the CGRA. This compiler can parse, analyze transform and 

schedule plain C program to CGRA[43][44].  
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Mei introduces a modulo scheduling algorithm to exploit loop level parallelism on CGRA in 2003. 

Modulo scheduling algorithm used in integer linear program processor such as VLIW to improve 

the parallelism by executing different loop iteration in parallel. Also modulo routing resource graph 

proposed as an abstraction of hardware description and enforce to modulo constraint.  The proposed 

algorithm combines the FPGA place and route algorithm with modulo scheduling to achieve a 

mapping of application onto CGRA [45].  

2.4.6 Modulo Scheduling  

Modulo Scheduling is a software pipelining technique employed to utilize instruction-level- 

parallelism in the loops body using overlapping consecutive iterations. The loop body is 

represented as a data flow graph where the nodes represent the operations, and the edges represent 

the data dependency among the operations. MS tries to find a pattern to develop it by several 

iterations of operations. MS utilizes a different approach in which the operation’s placement is 

performed in a cyclic interpretation without any resource conflicts and data dependency violations. 

The scheduling process includes three stages such as Prolog, Kernel, and the Epilog. The kernel 

corresponds to the steady-state execution in different consecutive iterations. The instructions of a 

repetitive pattern of operations are called kernels[46][47].  

 The goal of MS is to find a valid schedule in which the Initiation Interval (II) is minimized. II is 

the delay between two successive iterations of the loop body. Ideally, all the loop bodies are 

processed in parallel (II=0) if there are no dependencies and enough hardware resources. In the 

worst case scenario, the next iteration of the loop body cannot start before the current one is 

finished. Initially, the scheduler begins with Minimum II (MII) value between the maximum values 

of the recurrence-constraints lower bound (RecMII) and the resource constraints lower bound 

(ResMII). However, if a valid MS cannot be found, the scheduler increases the II by one, and the 

scheduling is attempted again to find a possible valid MS [42].  

MS attempts to explore one model of nodes in DFG that can be executed at the same level. This 

model, as discussed earlier, is called kernel. The kernel consists of a pattern of DFG nodes. The 

nodes can be executed as pipeline thanks to the specified pattern. To compute-intensive kernels 

with high efficiency and flexibility, CGRA architectures are the best candidates. Accordingly, the 
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modified MS is a popular method to map an application in the form of DFG to the CGRA [42], 

[46][47]. 

2.4.7 Modulo Scheduling and CGRA 

Modulo scheduling is widely used software pipelining technique that is capable of compiling DFG 

onto a family of heterogeneous CGRA. The goal of mapping is to generate a schedule that explicitly 

combined with place and route the operation that the application throughput is maximized. This 

criteria throughput is indicated using initiation interval by modulo scheduling. The II is essentially 

reflecting the performance of the scheduled and P&R applications onto CGRA, and it plays a 

central role in exploiting parallelism. Various algorithms have been developed for VLIW 

processors. However, they have not been successfully applied for CGRA architecture. In another 

word, the CGRA complexity architecture is much higher than VLIW, due to the complex 

architecture of CGRA. Thus, the key metric used to map an application onto CGRA is II [32][41]–

[43].   

The mapping application using MS onto CGRA may give rise to add some different approaches to 

the scheduler. This difference for scheduling application is mostly due to the hardware 

characteristics of the CGRA. Modulo scheduling for CGRA considers the scheduling, placement 

and routing the operations onto function units. Placement determines on which FU of a 2-

Dimensional array will place an operation. Scheduling determines in which cycle, an operation can 

be executed. Finally, routings will connect the placed and scheduled operations according to their 

data dependencies [32][41]–[43].  

In order to map the kernel (defined in Module Scheduling) onto CGRA, each particular cycle of 

the kernel is mapped on each II configurations of CGRA, where each configuration is referred to 

one configure the mapping of nodes onto CGRA. Configurations can be stored as a Configuration 

Context (CC) for CGRA, and they can be updated in every cycle. The CC specifies the 

functionalities and connectivity among FUs. The CC also includes the direction for each FU to 

determine where to get its input from prior cycle and where to write its output for the next cycle. 

In fact, CC is a valid mapped configuration of DFG nodes onto CGRA. 
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2.4.8 Summary of CGRA mapping algorithms  

The characteristics of particular CGRA mainly effect on the compilation techniques. Most CGRAs 

architectures are non-FPGA based that is coupled to a general purpose processor as a co-processor. 

Given this, compiling such systems are not as a generic problem similar FPGA-based, because the 

FPGAs-based has a standard architecture [48] [49]. 

An overview of placement and routing by well-known CGRA architectures is given in Table 2-1.  

It can be seen from this table the structure of the CGRA architecture has an important impact on 

the placement phase. Heuristic placement based on SA and genetic algorithms has been borrowed 

in synthesis systems for FPGAs [20][18]. PADDI is used a scheduling algorithm in order to 

resource allocation [20][18][50]. The routing based on greedy algorithms is used only in cases 

where the routing is restricted to one dimension. Also, the P&R result based on greedy algorithms 

would not be satisfied as well. The domain specifies which kind of applications can be executed 

on CGRA, as mentioned in Table 2-1.Table 2-2 provides the summary of the recent mapping 

algorithms on the CGRAs. 

Table 2-1- properties of programming environment of CGRA. 

CGRA Programming  Placement Routing Coupling Domain 

REMARC[26] Assembly Manual Manual Coprocessor MM 

RaPiD[22] RaPiD-C SA Pathfinder Loose DSP 

PipeRench[24] DIL Greedy Linear Greedy Coprocessor Data-Stream 

Pleiades [50][20]  C/C++ Direct - Coprocessor DSP 

MorphoSys[25]  C Manual Manual Tight DSP&MM 

KressArray[39]  ALE-X SA Neighbor Loose General-purpose 

GARP[51]  C Tree-matching Greedy Coprocessor General-purpose 

PADDI[20][50]  Silage By Scheduling Direct Loose DSP 

MATRIX[52]  Assembly Manual Manual Loose General-purpose 

ADRES[43] C SA-MS Tight MM General-purpose 
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Table 2-2-Technology mappings in recent years.  

Authors Technology Mapping DFG onto CGRA 

Ricardo [32]  Modulo scheduling based on a greedy heuristic.  

Naifeng[33] Mapping problem formulated based on ILP.  

Gayatri[34] Using search for local patterns to place node. A* algorithm proposed in this research to 

find a good solution and improve that solution to place a node on the CGRA. 

Akira [35]  Modulo scheduling algorithm based on resource reservation phase and scheduling 

algorithm. 

Yuanqing [36]  The high-level language program is used to map an application onto CGRA. 

Ganghee [37]  ILP consider to Steiner point routing in order to reach an optimal map application onto 

CGRA. Also, a heuristic algorithm based on scheduling and QEA (similar to the genetic 

algorithm) are combined to routing aware.   

Hartenstein[38]  Simulated annealing performs place and route. 

Hyunchul [40]  Graph embedding based on modulo scheduling. 

Hyunchul [41]  Edge-centric modulo scheduling, the placement, and routing algorithm are combined.  

Chen[42] The mapping problem is formulated based on the minor graph. Algorithm searches for 

one model of DFG in MRRG. The placement and routing are combined with modulo 

scheduling and search.  

Mei[43], [44],[28]  A module scheduling algorithm based on simulated annealing is used to placement and 

routing operands on the CGRA. 

2.5 Conclusion  

In this chapter, a review of the literature on topics specific to CGRAs along with mapping 

applications algorithms has been presented. 

Several researchers have proposed some algorithms to compile a program to automatically map an 

application onto CGRA. There are numbers of automatic design and compiling tools developed to 

exploit the massive parallelism found in applications and extensive computation resources of 

CGRA. Some researchers utilize structure or GUI-based design tools to manually generate a design 

that would be difficult to handle big designs. Some other have only focused on Instruction-Level 

Parallelism that failed to make utilization of the CGRA efficiently and in principle cannot result in 

higher parallelism than VLIW. However, ILP is limited in scope and fail to make resources 
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utilization efficiently in CGRA. Some recent researchers have concentrated on exploiting Loop-

Level Parallelism on CGRA by applying pipelining techniques such as modulo scheduling. Some 

Module scheduling algorithms have been proposed based on simulated annealing. It begins with a 

random placement of operation on the FUs of a CGRA, which may not be a valid modulo schedule. 

Operations are moved between FUs until a valid schedule is achieved. Simulated annealing 

techniques result in long convergence time for loops that contain a large number of operations. 

Some researchers have exploited many greedy algorithms. For example, deterministic place and 

route, heuristic depth-first placement and priority order placement with backtracking. Greedy or 

heuristic mapping is the option of choice for many mapping problems due to its speed and 

determinism. However, in the case of complex problems, it may perform poorly. Integer Linear 

Programming has received attraction due to its clear representation and the possibility to obtain an 

optimal solution. ILP has not been shown to be feasible for large scale mapping problems.  

In the next chapter, modulo scheduling integrates with the placement and routing algorithm to map 

a DFG nodes onto CGRA. Modulo scheduling attempts to find a pattern of the DFG nodes that can 

be executed on the same level by the CGRA. The integrated placement function is done through a 

recursive function that takes the ordered list of nodes from DFG.  The order list of nodes is found 

based on their mobility. The mobility of a node is the difference between the ALAP and ASAP 

scheduling methods.
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CHAPTER 3 PROPOSED SOLUTION BASED ON MODULO 

SCHEDULING INTEGRATED WITH PLACEMENT AND ROUTING 

3.1 Introduction 

Implementing applications on reconfigurable computing architectures (RCAs) is an important 

research topic due to its potential to accelerate a wide range of applications. However, configuring 

and programming RCAs is a long-standing challenge. In this section, we propose a design 

methodology to map an algorithm on an FPGA preconfigured with a Coarse-Grained 

Reconfigurable Architecture (CGRA). At the lowest configuration level, the architecture of the 

CGRA is elaborated, synthesized, placed and routed by some hardware design specialist using 

suitable tools. At the highest level, someone who has no particular knowledge in hardware design 

is, however, able to configure the CGRA to map an algorithm on a mesh of parallel computing and 

communicating nodes. For medium and large applications, where the number of nodes varies from 

tens to thousands, getting a good mapping of applications becomes manually intractable. Founded 

on well-known mapping and routing algorithms that we have tailored to match our context, we 

propose a design methodology to automate the mapping of applications on a two-level configurable 

adaptive hardware fabric. 

The second part of this section includes the runtime executing of the applications. From the first 

part of this section, it is known that the applications in existing architecture have reconfigured one 

time per each compile[3]. In other words, to execute an application with new data, the entire system 

needs to be synthesized again. Thus, this process is time-consuming to execute an application with 

different data. The time-consuming is mostly because this architecture is not tailored for runtime 

executing applications. It should be noted that some of the applications have different data and can 

be launched at design time. Therefore, it is not efficient to implement these applications by fixed 

design. On the other hand, the on-line adaptation of application on hardware may permit significant 

acceleration which results in the flexibility and adaptability of the platform to run time application. 

To address these abovementioned problems the predefined architecture CGRA based on FPGA 

enhances to a new architecture to runtime executing applications. The new architecture is 

composed of predefined CGRA coupled with processor-based IPs or MicroBlaze. CGRA FIFO 
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banks can be dynamically fed with new data via CDMA. The CDMA helps to reach a high 

throughput application running on the CGRA. The MicroBlaze enables the user to control, 

assemble and manage the data flow on FIFO banks. In fact, the programmer can execute the 

applications at runtime with different data using high abstraction level of the architecture without 

to be involved in the low-level design. 

3.2 Mapping Applications on Two-Level Configurable Hardware 

This subsection addresses the question of mapping complex applications in an architecture 

proposed previously, which is inspired by CGRAs. Such architecture introduced the concept of two 

different configuration levels. At the lowest level, a hardware design specialist assembles a kind of 

dedicated CGRA composed of building blocks such as token-based ALUs, FIFOs, and sequencers 

(the control path of a token machine). The circuit is then synthesized, placed and routed on an 

FPGA. At the highest level, people with a background in computer sciences program the token 

machines to implement an application. Such architecture offers many advantages such as 

reconfigurability, evolution, high (and low) level programming, low-level parallelism exploitation, 

etc. 

3.2.1 Mapping procedure 

The mapping procedure takes a data flow graph (DFG) as input, typically the body of a loop. A 

maximum number of operations are processed in parallel, and a new iteration of the body loop is 

started as soon as possible, ideally before the completion of the current one, by using software 

pipelining techniques inspired of the Iterative Modulo Scheduling. Modulo scheduling is modified 

in a way that placement and routing phases are integrated into it. 

Each node of the data flow graph is an operation that must be placed in an ALU for execution. The 

inputs, intermediate results, and final results are placed in FBs. The routing is done from one FB 

to other FB among the fabric through the central router of the SALU when an operation is triggered. 

Eventually, a “void” operation can be launched only to route the data through the SALU. Finally, 

all the configurations of the TSM are generated according to a placement and routing process of 

operations and data transfers.  
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To ease the understanding of the proposed methodology, it will be illustrated with the small data 

flow graph (DFG) loop body example in Figure 3-1. This DFG is to be mapped on a small subset 

of the computing fabrics that has 4 ALUs and 2 FBs, as illustrated in Figure 3-2.  

 

Figure 3-1- Illustrative example input data flow graph loop body 

 

Figure 3-2- Illustrative example target Hardware Architecture Description 

In the context of loop implementation, the proposed methodology attempts to minimize the 

Initiation Interval (II), which is the delay between two successive iterations of the loop body. 

Ideally, all the loop bodies are processed in parallel (II=0) if there are no dependencies and enough 

hardware resources. In the worst case, the next iteration of a loop body cannot start before the 

current one is finished. Function MII shows in Figure 3-3 describes how it computes the Minimum 
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Initiation Interval (MII) from the Hardware Architecture Description (HAD) and the Data Flow 

Graph Loop Body (DFGLB).  

 

Function MII (HAD, DFGLB); 
Begin  
 1 Nodes= number of vertices in DFGLB; 
 2 Size= number of ALU in HDA; 
 3 ResMII=Nodes/Size ; 
 4 RedMII= Maximum data dependency 
 5 II= max (ResMII, RedMII); 
 6 Return II; 
End 

 

Figure 3-3- Calculate the Minimum Initiation Interval (MII) 

Data Flow Graph Loop Body and Hardware Architecture Description are specified as the inputs 

for this MII function, where DFGLB is referred to DFG loop and HAD to the property of computing 

fabric such as FUs specifications, FBs specifications, and the interconnect architecture 

specification. For this simple example, the HAD is described as pseudo-code in Figure 3-4.  

The MII clearly depends on the number of nodes to be computed and available ALUs. In the best 

case, all the ALUs are active at each clock cycle, and the MII is computed as in line 3 of function 

MII illustrated in Figure 3-3. However, one iteration of the loop body may require some 

intermediate results computed in the previous occurrence. Such dependencies may increase the 

MII, which is taken into account in line 4 of function MII. The MII is the maximum value issued 

from those two constraints.  

To map DFG nodes on the target architecture, mapping algorithm first orders the nodes by 

decreasing mobility. The mobility of a node is the difference between the ALAP and ASAP 

scheduling times as shown in Figure 3-5. 
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Hardware Architecture Description (HAD) 

Begin 

1 <Number of FUs= 4>, <Number of FBs=2> 

2 <Function Unit name= “ALU0”> 

3 <port-name=”in1”>,<port-name=”out1”> 

4 <in1-connect-to>FIFO Bank0 

5 <out1-connect-to>FIFO Bank0, FIFO Bank1 

6 <Function Unit name= “ALU1”> 

7 <port-name=”in1”>,<port-name=”out1”> 

8 <in1-connect-to>FIFO Bank0 

9 <out1-connect-to>FIFO Bank0, FIFO Bank1 

10 <Function Unit name= “ALU2”> 

11 <port-name=”in1”>,<port-name=”out1”> 

12 <in1-connect-to>FIFO Bank1 

13 <out1-connect-to>FIFO Bank0, FIFO Bank1 

14 <Function Unit name= “ALU3”> 

15 <port-name=”in1”>,<port-name=”out1”> 

16 <in1-connect-to>FIFO Bank1 

17 <out1-connect-to>FIFO Bank0, FIFO Bank1 

18 <FIFO Bank= “FB0”> 

19            <port-name=”in1”>,<port-name=”out1”> 

20 <in1-connect-to> ALU0, ALU1, ALU2, ALU3 

21 <out1-connect-to> ALU0, ALU1 

22 <FIFO Bank= “FB1”> 

23            <port-name=”in1”>,<port-name=”out1”> 

24 <in1-connect-to> ALU0, ALU1, ALU2, ALU3 

25 <out1-connect-to> ALU2, ALU3 

26 End 

Figure 3-4- Pseudo code for Hardware Architecture description example 

A null mobility means that the operation should be immediately computed after its parents since it 

is on the critical path. The higher the mobility, the longer the routing can be without impacting the 

computation time. 
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Figure 3-5- ASAP and ALAP scheduling 

The ordered of DFG nodes is generated by function Generate_Ordered_Vertex_List (DFG) which 

is shown in Figure 3-6.  

Function Generate_Ordered_Vertex_List (DFG); 
Begin  
1 For each node vi ∊ DFG loop 
2  //Compute the mobility 
3  Mi(vi )= Level(vi ,ALAP(DFG))- Level(vi ,ALAP(DFG)); 
4 End loop;  
5 List OVL = {vi ∊ DFG}; 
6 Sort OVL by increasing Mi then by decreasing ASAP level. 
Return OVL 

End Function;   

Figure 3-6- create an ordered list of nodes 

  

The ordered list of nodes is sorted by increasing mobility and decreasing ASAP level. In fact, the 

ordered list of nodes is created based on the critical path in DFG. Thus, the nodes along the critical 

path that have higher priority should appear earlier.  

In our example, the function Generate_Ordered_Vertex_List (DFG) illustrated in Figure 3-6 

returns the following: M1=1-1=0; M2=2-2=0; M3=1-1=0; M4=2-1=1; M5=2-2=0; OVL = {v1, v3, 

v2, v5, v4}. 



36 

 

 

 

The proposed methodology consists of attempting to map the DFGLB on the HAD with the 

computed MII. If the attempt fails, the II is incremented until a valid mapping is found. The 

methodology is detailed in Algorithm I shown in Figure 3-7. 

Algorithm I: Mapping Loop Body 
Inputs: DFG, HAD; 
Begin 
1 II= MII (HAD, DFG); 
2 OVL= Generate_Ordered_Vertex_List (DFG): 
  
3 while (true) { 
4  MRRG= Gen_Arch_Graph (II, HAD); 
5   CC=MSPR (OVL, MRRG); 
6  if (no mapping is found) II++; 
7  else return CC; 
 } 

End Algorithm 

Figure 3-7- Main Function of the mapping DFG onto fabric 

The inputs for Algorithm I are Initiation Interval (II) along with Ordered Vertex List (OVL). The 

mapping algorithm will start with MII.  For each attempt, the Modulo Routing Resource Graph 

(MRRG) is constructed for the current II. The MRRG is a graph representing the connectivity 

resources between the ALUs and the FBs. A configuration is produced for each time slot in the II. 

An MRRG is illustrated in Figure 3-8 for II=2. All the ALUs and the FBs present in HAD have 

simply copied in each configuration as well as the routing between them, taking into account that 

an operand in configuration N produces a result in configuration N+1. 
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Figure 3-8- Modulo Routing Resource Graph (MRRG) for II=2 

MRRG function is shown in Figure 3-9 which returns a Modulo Routing Resource Graph (MRRG) 

of hardware architecture. This function contains the nodes representing the FUs and the FBs and 

the edges representing the connectivity among them.  

Function MRRG (II, HAD); 

Begin 

1             For each vertex FUi, FBi∊ HAD loop 

2    For j=0 to II-1 loop 

3         Add vertex (FUi) j, (FBi) j to MRRG 

4 // add nodes to each II different configurations for CGRA 

 5            For each edge ∊ HDA loop 

6 For j=0 to II-1 loop 

7        Add edges between (FUi )j , (FBi )j to MRRG 

8 // add internal edges to each II different configurations for CGRA 

9           For each FUi, FBi ∊ MRRG loop 

10         For j=0 to II-1 loop 

11      Add edges between (FUi ) j+II , (FBi )j+II+1 to MRRG 

  

Return MRRG   

End Function;  

Figure 3-9- Generate MRRG 
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Finally, the mapping function MSPR (Modulo Schedule Place and Route) is launched. If a valid 

mapping is found, the configuration context (CC) is returned as the final result. Otherwise, the II 

is incremented and a new attempt is launched. The MSPR function is shown in Figure 3-10. This 

function captures the scheduling plus placement and routing information. The algorithm attempts 

to find a valid MSPR of DFG onto the MRRG. 

Function MSPR (OVL, MRRG, CC) 
Begin  
1 Pop first node v from OVL that is the successor or the predecessor of an already routed node; 
2 {pv }= placement information of predecessors of v; 
3 {sv}= placement information of successors of v; 
 
4 {pri} = Place _ Route (v, pv, sv, MRRG); 
 
5 if {pri} is empty, return NULL; 
 
6 For each pri  loop { 
7 Temporarily place and route node v at pri; 
8 Recursive call to MSPR (OVL, MRRG, CC); 
9 if (MSPR is successful) return CC; 
10 //Backtrack by attempting the other pri 
} 
End Function 

 

Figure 3-10- Modulo Scheduling Place&Route (MSPR) 

The MSPR function is the core of the proposed methodology. It attempts to Place and Route (P&R) 

the nodes one-at-a-time based on the ordered list of nodes OVL. Also, each node is mapped onto 

target if and only if one of its successors or predecessors have already mapped except the first node. 

MRRG and OVL are used as inputs for MSPR function.  

The mapping of each node v directly depends on its predecessors (pv) and successors (sv). Then, 

for each entrance node, first, the address mapped of pv and sv onto target are determined.  

The placement is done through a recursive function that takes the ordered list of nodes OVL that 

has not been placed and routed yet, the current state of the MRRG and the corresponding state of 

the CC. The first node is removed from OVL and the function Place_Route returns a set of places 

and corresponding routes opportunities for that node, taking into account its predecessors that are 

already placed and routed, and eventually its successors that would already have been placed and 
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routed previously. If there is no place and route opportunity in the given context, the function 

returns a null value forcing the previous calls to backtrack and try other place and route 

opportunities at their level. If there are one or several opportunities, they will be tested one by one 

until the remaining nodes in OVL can be fully placed and routed. 

The function Place_Route relies on well-known routing algorithms such as A* or Dijkstra to 

propose a set of P&R opportunities. Each opportunity has a cost that depends on of the length of 

the path, the ALU that is already reserved in another configuration, and the affinity of the current 

node with the rest of the nodes that are already placed.  

When each DFG node is mapped onto MSPR, some criteria constraints are performed to satisfy 

the mapping. For instance, the criteria are the minimum routing function, affinity cost, available 

resource constraint, and warning-mapping. The minimum routing function indicates the shortest 

path between the source and destination. The affinity cost determines that the two producers with 

the common consumers should be mapped as closely as possible to each other. The available 

resource constraint simply checks the number of available resources of each type (FU, RF) of 

MRRG to be larger than the number of unmapped DFG nodes. Warning-mapping guarantees that 

the current mapping can result in a successful mapping in the future or not. If the mapped node 

cannot pass the constraint test, the algorithm has to choose other opportunities. Finally, the list of 

opportunities is sorted by increasing cost such that the MSPR function starts by attempting to find 

a solution with low-cost P&R configurations. The Place_Route function is described in 

Figure 3-11: 

This function (node_Place_Route) primarily focuses on routing, and the placement phase occurs 

during the routing process. As an exception, the first node of OVL is placed in a free place of 

MRRG. This method clearly improves the compilation time since it eliminates the redundant steps 

to search an empty position. 

When applied to our illustrative example, the MSPR function produces the place and route mapping 

reported in Figure 3-12. For simplicity of exposition, only the routing edges are presented in 

Figure 3-12.  
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Function node_Place_Route (v, pv, sv, MRRG) 
Use: standard routing algorithms (A* or Dijkstra) 
Use: a cost function that depends of the affinity 
Begin 
1 If (pv =null) and (sv= null) Then 
2  map v into free place of MRRG; 
3 else if (sv= null) Then 
4  find a set of possible mapping for v near pv 

5  find a set of routes from pv to v 
6 else  
7  find a set of possible mapping for v near pv and sv 

8  find a set of routes from pv to sv through v 
9 end if 
10 compute the cost of each configuration 
11 sort the list of configurations by increasing cost 
12 Return the list of configurations 
End function; 

Figure 3-11- Place &Route Function 

A complete body iteration requires three clock cycles, but a new iteration can already start after 

only two clock cycles (II=2). The center of the figure represents the steady state (two 

configurations). In configuration 1, ALU #2 computes the operation v5 of the previous iteration 

while ALU #0 and #1 compute operations v1 and v3 of the current iteration. In configuration 2, 

ALU #0 and #3 compute operations v2 and v4 of the current iteration. Figure 3-13 shows two 

different configurations mapped in the CC of the CGRA to support the implementation of this 

simple example.  Those configurations are finally coded into the TSM (one TSM per ALU) where 

each instruction involves two data token sources (the operands), an operator in the ALU and a 

target FB to store the result. The following assembly code gives the sequence of instructions for 

each TSM. OPAv1, OPBv1 refer to operand A and B of v1, respectively.  

TSM0: OPAv1× OPBv1 OPAv2; OPAv2+ OPBv2 OPAv5. 

TSM1: OPAv3× OPBv3 OPBv2; 

TSM2: OPAv5+ OPBv5 Result; 

TSM3: OPAv4× OPBv4 OPBv5; 

As expected, TSM0, related to ALU0, is configured twice (once for v1 and once for v2). 
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3.2.2 Propose an Assembly Code for Computing Fabric 

The token state machine (TSM) is acted as a program memory for the system that contains the 

required instruction for an application implemented by computing fabric. Each instruction is 

composed of 47 bits. For some applications that require hundred or thousand instructions, it is 

extremely inconvenient to make all instructions manually. There is a lack of strong tools that can 

take defined programs written by high-level language and creates the assembly code associated 

with the computing fabric. 

 

Figure 3-12-MSPR result for our illustrative example Corresponding II=2 
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Figure 3-13-Two configurations (left and right) to map our sample DFG 

 The Python language is used To create the automatic assembly code for our computing 

architecture; The user can write a program in a specific order based on the instruction format of 

computing fabric. The Python language tool compiles the code and generates the assembly code 

worked with the computing fabric. In Appendix A, each word of the proposed assembly language 

is explained which is used to generate coding of instruction.  

3.2.3 Generates the instruction bits for TSMs using WinTim32 Application 

 WinTim32 is a fully functional Meta assembler and 1.5-pass assembler based on the Texas 

Instruments Meta-Assembler known as "TIM”[53]. An assembler translates human-readable 

symbolic assembly language programs into binary machine language that can then be loaded into 

the computer’s memory. A Meta assembler allows the user to define the instruction formats for any 

machine. Once the user defines instruction formats, the Meta assembler then serves as an 

assembler. A Meta assembler is useful for people that are designing a new computer since they can 

use it to assemble programs for the new computer without writing a new assembler from scratch. 

WinTIM is a Meta assembler used to convert the symbolic strings of a source program to machine 

language code. 
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 The full C++ source code is also available for the WinTim32 program. The source code has been 

modified based on our requirements to generate the constant VHDL files. This VHDL file contains 

all the instruction bits memory assigning to computing fabric.  

To produce this VHDL file, the first step is to define all of the instruction formats and mnemonic 

names. WinTIM and definition tables process the definition file are produced by the assembly 

process.  

The second step is to assemble the assembly language program for the new instruction formats 

using the instruction definition tables produced in the definition phase. In this step, the Meta 

assembler functions as a conventional assembler as it converts symbolic assembly language in a 

*.src file into binary machine language. 

Figure Appendix B 1 shows the instruction format with mnemonic names based on our computing 

fabric. The source code of WinTim32 is modified based on our requirements, then the given 

definition and VHDL file are generated.  This VHDL files for one tile of computing fabric is shown 

in Figure Appendix B 2. Therefore the VHDL file contains one TSMs with eight small tsm such as 

tsm0-7. The tile of the computing fabric and the number of small tsm are defined as parameters, 

i.e., the user can change them based on the size of the computing fabric, and the number of tsm 

require in one tile. Binary instructions bits in VHDL files are matching with their assembly codes.  

 

3.3 Runtime Executing Applications on Parallel Computing and 

Communicating Nodes 

The second part of this section intends to enhance the existing CGRA to exploit the benefits of the 

runtime applications. 

The proposed architecture contains a 2-D mesh computing fabric coupled with two Microblazes. 

Microblaze is a virtual soft core microprocessor based on 32-bit the Reduced Instruction Set 

Computer (RISC) architecture. The RISC architecture is optimized for implementation in Xilinx 

FPGA in which the instruction and data buses are separated from each other. The Microblaze 
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processor architecture balances execution performance against implementation size. It is highly 

customizable and supports a lot of configuration options.  

These processors act at the overall runtime management, resemble, data flow and controlling of 

data tokens through parallel computing mesh (called computing fabric). In addition, these 

processors provide the performing IO with the external world via UART and other available 

interfaces.  

To execute an application on preconfigured CGRA on FPGA at runtime, the CGRA should be 

enhanced to reload the contents of the FIFO banks dynamically in computing fabric. CGRA in new 

architecture is defined as a custom peripheral Intellectual Properties (IP). This IP is attached to the 

Processor Local Bus (PLB) where the Microblaze is defined as a microprocessor. In order to 

execute the applications at runtime with possible high throughput, a Central Direct Memory Access 

(CDMA) is used. Using the CDMA, the CGRA’s FIFO banks can dynamically feed with new data 

token. Then, it leads to support runtime execution applications through CDMA by feeding 

embedded FIFO banks inside the CGRA. 

It is shown that the central router network in SALU has a bottleneck that is a strong limitation to 

implementing large data flow graphs. In fact, the SALU can produce eight data tokens per cycle 

but is only able to route four data tokens in the central router. This problem will be addressed and 

fixed by duplicating the central router and adapting the decoders accordingly. We will then discuss 

the new architecture to support runtime execution applications. 

3.3.1 Modified Fabric: 

In the new version of the fabric, some deficiencies have been resolved such as 1) internal buffer 

inside the SALU, 2) central router network 3) the mesh topology is modified to the Torus-mesh 

topology in order to utilize the edges boundary of fabric.  

The prior internal buffers inside the SALU could store and load single data token whereas, in the 

updated version of the computing fabric, internal buffers can store and load a streaming data. As 

presented in Section 2.3.7, the SALU is composed of three elements; ALUs, decoders, and a 

Central Router Network. It should be mentioned that the SALU defines generating, calculation and 
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the routing of the data tokens.  The router could convey four data tokens to four distinct destinations 

(up, down, right and left) at the same time. This structure may affect the performance of the 

throughput of the system. To increase the throughput, the structure of the router should be modified 

to send at least two data tokens to each side simultaneously. According to the number of ALUs on 

each side, the structure of the SALU is modified. The possible solution is that the router is 

duplicated two times and each pair of the decoder with its ALU on each side is connected to the 

one router. Figure 3-14 shows the block diagram of the new network router.  

 

Figure 3-14- New Network Router. 

It is seen from Figure 3-14 that the network can accept eight tokens per cycle and return the same 

number of tokens to their destinations. Figure 3-15 illustrates merging data from two routers to 

each FIFO bank. Each FIFO bank contains 15 small FIFOs. It should be taken into account that the 

single FIFO is accessible only by one router at each clock cycle.  
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Figure 3-15- Merging Data from two routers to a FIFO Bank 

The assigning data tokens from routers to other FIFO banks (UP, Right and downsides) are 

following the same roles as shown in Figure 3-15.  

3.3.2 Runtime Executing Application on the Computing Fabric  

3.3.2.1 Why Microblaze is used  

In this section, a Microblaze would be coupled with the parallel computing and communication 

nodes via Processor Local Bus (PLB). The flexibility of Microblaze gives this opportunity to the 

users to balance the required performance of their application against the area logic cost of the soft 

processor. Another advantage of using Microblaze is its ability to integrate customized Intellectual 

Property (IP) cores. The Microblaze with IP can dramatically improve acceleration in software 

execution time due to the algorithms being executed as parallel in hardware instead of executed 

sequentially in software. One of the restrictions to Microblaze is the nature of RISC processor 

architecture. Modern RISC processor includes two inputs and one output execution unit as ALU.  

It is known that the Microblaze is a pipeline architecture that is composed of three or five pipeline 

stages such as Fetch, Decode, Execute, Memory and Write Back. In general, each stage takes one 

clock cycle to be completed. Thus, to complete an instruction, it takes three or five clock cycles to 

be completed.  
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Based on the nature of the RISC processor architecture, the maximum throughput is restricted. In 

another word, if an application needs a high rate of the calculations, the RISC architecture is not 

useful. The modern applications that require several instructions are not suitable for this kind of 

the architecture since they need more execution units. The user IP core is an alternative to solve 

this problem to execute more than one instruction per cycle. However, attaching user IP to the 

processor may have its restriction such as throughput of transferring data between IP and 

Microblaze.  

Computing fabric as IP attached to the MicroBlaze gives this opportunity to the users to execute 

two different applications on the same platform. In addition, the user can separate the critical and 

sequential application codes from each other that could be implemented on CGRA and MicroBlaze, 

respectively.  

3.3.2.2 Attaching User IP to the Microblaze via PLB  

The parallel communicating nodes or fabric is implemented as a user IP, and it is attached to the 

Microblaze via PLB. A channel is required between computing fabric and Microblaze to access to 

each FIFO bank in the fabric. Figure 3-16 illustrates the general view of communicating between 

computing fabric and Microblaze. The processor shown in Figure 3-16 acts at the overall run-time 

management, resemble data flow and controlling of data tokens in FIFO banks in parallel 

computing mesh. 
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Figure 3-16 - Microblaze coupled with the fabric 

The size of the fabric in Figure 3-16 is 2×2 tiles, and each tile has a specific identification (ID) 

from 1 to 4, where 1 is referred to the tile “00” and 4 to the tile “11”.  Each tile of the fabric has 32 

FIFOs that are placed in two different FIFO banks. The decoder in Figure 3-16 is responsible for 

connecting right data to tiles using the ‘tile select’.  

There are two methods to transfer the data to the fabric. The first method is shown in Figure 3-17. 

In this method, the write enable (Wr_en) signal associated with each FIFO and their data are 

separated. This method consumes more clock cycles since it needs two instructions per each data; 

one for choosing the FIFO (Wr_en) and other for assigning data (Data_In). In addition, the read 

process by Microblaze from fabric contains two links as shown in Figure 3-17.  
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Figure 3-17- Double Link between Microblaze and Fabric for writing and reading process 

The second method used as a single link between Microblaze and fabric is shown in Figure 3-18. 

In this method, one link for writing to the fabric contains the both “Wr_en” and “data” signals. In 

addition, in the read process, one link is enough to read data from fabric.  

                  

Figure 3-18- Single Link communicating between Microblaze and fabric for writing and reading 

process 

3.3.2.3 Microblaze and streaming data  

In this section, a bottleneck while the objective is to transfer streaming data between Microblaze 

and computing fabric over PLB is explained and a possible solution to this problem is proposed.    

As I mentioned in 3.3.2.2, the computing fabric is attached to the MicroBlaze as a co-processor. 

There is an already established single link between MicroBlaze and computing fabric. This link is 

useful when the burst transfer is not the objective and is more efficient when the single beat data is 

the final point. In fact, the C code does not support the burst data between the processor and its 

attached co-processor. For example Table 3-1 gives the equivalent assembly code according to C 

code on the left side, where “Pointer to Fabric” is pointed to the computing fabric address.   

Microblaze Fabric 

Data_In 

Wr_en 

Data_Out 

Rd_en 

Microblaze Fabric 

Data_In 

Data_Out 
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It is seen from this table that the C compiler for this simple code uses three instructions. For each 

line of code, a co-processor (computing fabric) receives the data within 12 clock cycles, i.e., 

MicroBlaze needs 12 clock cycles to send a single beat communication data over the PLB.   

Table 3-1-Equivalent assembly code for a simple C code 

Pointing to address of fabric Assembly code 

*(Pointer to Fabric) = 207; //data [0];   

 *( Pointer to Fabric) = 198; // data [1];  

  

 107   *( Pointer to Fabric) = 207; 

 00000780:   lwi r3, r19, 36 

 00000784:   addik r4, r0, 207       

  00000788:   swi r4, r3, 0   

108     *( Pointer to Fabric) = 198; 

0000078c:   lwi r3, r19, 36 

00000790:   addik r4, r0, 198        

00000794:   swi r4, r3, 0 

Computing fabric architecture is based on data-driven which means that the operations start as soon 

as the operands are available in the FIFOs that contain the operands. Data token results are 

produced in one clock cycle if and only if data token inputs are available in their ports. Therefore 

if each input data token is fed within 12 clock cycles, then its result is generated in the next clock 

cycles by the computing fabric. It should be noted that the application is configured in low latency 

with high-throughput. In fact, the computing fabric goes to standby until the next data arrives. 

Given this, computing fabric is not a good candidate to support runtime execution due to its big 

latency and low throughput as well as its cost space. In other words, computing fabric capability is 

blocked by its channel to wait for receiving the new data tokens.  

3.3.2.4 Direct Memory Access (DMA): 

The main reason to choose the DMA as an option is to overcome the abovementioned problem for 

PLB burst transfer. Using DMA, it is possible to read data directly from memory by the user 

Peripheral IP- core or co-processor. In this work, the central DMA (CDMA) core, provided by the 
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Xilinx, is used. The user defines the length of the burst data transfer through CDMA. The maximum 

throughput using CDMA to transfer the data between source and destination address is half data 

per cycle. With this rate of the transmission, computing fabric can generate each data tokens in two 

clock cycles.  

Another advantage of CDMA transfer over the burst is its decoder module in Figure 3-16. This 

decoder could be implemented in the software instead of the hardware via VHDL code. This 

decoder in hardware needs 64 registers corresponding to each FIFO in one tile of the computing 

fabric. Among these registers, 32 are used to write into FIFOs and the remaining 32 registers for 

reading from FIFOs. A drawback to these registers is that the decoding address corresponds to each 

FIFO consumes the large logic area which can increase the timing critical path. However, this 

decoding module can be transferred to the software. Table 3-2 gives the implemented software 

decoder corresponding to each FIFO. In order to write onto FIFOs, the tile number should first be 

defined at the beginning.   

Figure 3-19 shows an example of the burst data transfer by CDMA which is separated from 

Microblaze. It is seen from this figure that the destination address is the FIFO5 of FIFO bank1. In 

the first step, MicroBlaze selects the corresponding address to the destination FIFO. Then, when 

the data arrives, it should be connected to the destination FIFO which is already determined by the 

Microblaze.  

Table 3-2- Implemented software decoder to select each FIFOs in one Tile of computing fabric  

FIFO Bank UP FIFO Bank Down 

FIFO_0: 0X00000001 FIFO_8: 0X00000100 FIFO_0: 0X00001000 FIFO_8: 0X00100000 

FIFO_1: 0X00000002 FIFO_9: 0X00000200 FIFO_1: 0X00002000 FIFO_9: 0X00200000 

FIFO_2: 0X00000004 FIFO_10: 0X00000400 FIFO_2: 0X00004000 FIFO_10: 0X00400000 

FIFO_3: 0X00000008 FIFO_11: 0X00000800 FIFO_3: 0X00008000 FIFO_11: 0X00800000 
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Table 3-2- Implemented software decoder to select each FIFOs in one Tile of computing fabric 

(continued) 

FIFO Bank UP FIFO Bank Down 

FIFO_4: 0X00000010 FIFO_12: 0X00001000 FIFO_4: 0X00010000 FIFO_12: 0X01000000 

FIFO_5: 0X00000020 FIFO_13: 0X00002000 FIFO_5: 0X00020000 FIFO_13: 0X02000000 

FIFO_6: 0X00000040 FIFO_14: 0X00004000 FIFO_6: 0X00040000 FIFO_14: 0X04000000 

FIFO_7: 0X00000080 FIFO_15: 0X00008000 FIFO_7: 0X00080000 FIFO_15: 0X08000000 

 

Figure 3-19- A simple example of access to a FIFO by CDMA 

Once the data is placed in predefined FIFO by CDMA, it spreads out among computing fabric. The 

software is responsible for spreading out data to other parts of the computing fabric based on its 

demand. The advantage of this method consumes a less amount of the logic resources. Also, the 
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process of data developing to the entire part of computing fabric is easier by the software. An 

example shows the efficiency of this method in Figure 3-20.  

 

Figure 3-20- a) spread out data by Hardware b) spread out data by the software 

Figure 3-20 (a) shows the data spreading out the procedure by the hardware. To this end, a 

controller should be attached to receive data and transmit it to the computing fabric. This controller 

contains a FIFO to buffer the input data arriving from CDMA and a complicated state machine. 

The number of the states in state machines depends on the number of application’s inputs. If the 

application has 32 inputs, the state machines need more logics. For example, for three inputs the 

state machines are configured as three states. Each state connects one input to a FIFO. Each state 

is transferred to other after in each clock cycle. The transferring of states are continued until to 

send all inputs to the FIFOs.  
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Figure 3-20 (b) shows a similar process as in part (a), yet the system does not need any controller. 

The user can decide if CDMA should connect to FIFO and defines its code to spread out data from 

FIFO source to the other FIFOs.  

3.3.3 General View of Runtime Executing Application Hardware 

The proposed architecture contains a 2-D mesh computing fabric coupled with two Microblazes. 

The high-level block diagram of the prototype system is illustrated Figure 3-21. It is known that 

some applications exhibit multi-thread parallelism which can enhance the overall performance.  

These processors provide the performing IO with the external world via UART and other available 

interfaces. The dual-core microprocessors available in this architecture are independent. It is seen 

from this figure that the link to each microprocessor is equal to have access to the FIFO banks. In 

this case, through one microprocessor writes the data tokens into FIFO banks and others read the 

data tokens from FIFO banks. 

The CDMA gets data from the source address. In this case, it is BRAM attached to the PLB. CDMA 

transmits the data to the destination address (computing fabric). It should be noted that both the 

source and destination address should be accessible by the CDMA.  It means that when CDMA is 

attached to the PLB, then their source and destination devices must be attached to the PLB not 

anywhere else.   

Figure 3-22 shows the screen shot of the implemented proposed architecture using Embedded 

Development Kit (EDK) tools to a runtime execution of the applications. It can be seen from this 

figure two Microblazes along with CDMA are defined as masters. Computing fabric also is 

attached as a co-processor to the PLB. BRAM_img is the source address which the data are stored 

there, and CDMA can access to it.  
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Figure 3-21- Runtime Execution Applications Architecture 

 

Figure 3-22- Screen shot of the Implemented architecture to support runtime execution of the 

applications using EDK 
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3.4 Conclusion  

The first part of this section introduced a design methodology to automate the process of mapping 

applications onto an FPGA-based computing fabric developed in previous work. Made of parallel 

computing and communicating nodes, the fabric resembles CGRA but it is data-driven, and it has 

an original communication network that deserves a custom place and route methodology. The 

proposed methodology, founded on the Modulo Scheduling algorithm, converges rapidly towards 

a solution with a low initiation interval. The foundation of the methodology is a list scheduling 

algorithm that takes into account the mobility of a node, the affinity with other nodes and the 

already placed and routed predecessors and successors. 

The second part of this section introduced a new model of high abstraction level runtime execution 

of the application. The proposed architecture is shown to make the abstracts away from FPGA to 

high-level design. Easy-to-use and flexibility of the proposed architecture have provided an 

opportunity for those applications requiring to be dynamically executed. However, the proposed 

architecture provides a simple and fast method for programmers enabling them to reload new data 

to their applications on hardware.  

.
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CHAPTER 4 EXPERIMENTAL RESULT 

4.1  Introduction 

Implementing the proposed architecture for mapping on runtime reconfigurable is not simply due 

to imposing many challenges and surprises. In the case of the proposed solution, the important 

aspect is to prove the use of the resources against the performance. The resources could be 

measured by suitable tools such as Planahead or ISE Xilinx tools, for an application implemented 

onto our computing fabric. Also, the performance may be comparable while an application is 

implemented in two distinct hardware architectures. To analyze the performance of the system, 

especially in digital circuit design, several parameters may be involved.  One which may affect the 

performance is how long a design takes to reach to a final point of its test and implementation. It 

should be noted that some applications need a designer with a good knowledge in hardware design. 

It is known that developing an application on hardware; it is not always an easy task. For example, 

to implement an application in VHDL, one may need a strong background in the hardware design 

roles as well as time and budget. Once the designer decides to develop an application or reconfigure 

it with new data, all previous attempts from the beginning of a design should be taken into account.   

According to the existing challenges, this section provides an experimental result of the computing 

fabric where the designer does not need to be involved in the low-level design, yet can implement 

the application onto FPGA platform.  

The result in this work is obtained by using a manual implementation of the proposed mapping 

algorithm onto computing fabric. The main objective is to let FPGAs become the mainstream 

computing hardware. This may be achievable in a future work when the proposed methodology 

will be automated, optimized and compared with other approaches in the field of the high-level 

configuration of FPGAs.   

Finally, the proposed architecture is elaborated, synthesized, placed and routed on Xilinx Virtex-5 

family using suitable tools. In addition, the runtime matrix multiplication result shows that the 

proposed architecture can lead to high throughput to perform runtime applications.  
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4.2 Simulation and manual mapping application on computing fabric 

The results presented in this section are based on the new architecture that enables eight data tokens 

to be produced and routed at each clock cycle. The topology of computing fabric is based on Torus 

-Mesh topology.  

Our methodology is manually applied to two tangible examples taken from the DSP world. The 

first example is a matrix multiplication algorithm (the RGB-YCbCr transform), which is illustrated 

in Figure 4-1. Since the inputs are high-fanout nodes, these nodes are advantageously duplicated 

to enhance the MII. In this case, the R, G, and B should be repeated since they are used three times 

by the restricted ALUs on one side of SALU. Otherwise, the II can be increased, and it will affect 

the maximum throughput of the circuit. 

 

Figure 4-1- RGB-YCbCr DFG application 

Two SALUs (SALU00 and SALU01) and their associated FB are considered as the target 

architecture (2-D torus illustrated in Figure 4-2).  
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Figure 4-2-Target architecture (SALU00, SALU01, and their FBs only) 

The ordered list of nodes is computed, and the MII is found to be one. The MRRG is constructed 

and illustrated in Figure 4-3, where the Figure 4-2 is flattened to one row for the convenience of 

drawing. Nevertheless, the topology remains the same. 

 

Figure 4-3- MRRG of the target architecture composed of two SALU 

In the next phase, the algorithm creates a Modulo Schedule Place and Route. MSPR is a subgraph 

of MRRG capturing the scheduling, placement, and routing information. The algorithm attempts 
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to find a valid MSPR of DFG onto the MRRG. MSPR is a 3-D demonstration of P&R related to 

the time axis. The first node is A0, which is mapped onto SALU00: ALU5. As can be seen from 

Figure 4-3, the A0 output can be routed to FB0, FB1, FB2 or FB5, where each route has a cost. In this 

example, FB0 has a high cost since it is connected to SALU00: ALU5, which is already used to 

compute A0. The other nodes have the same cost. The algorithm will randomly choose FB2 to route 

the A0 result. The remaining FB are kept as potential candidates if the algorithm has to backtrack 

at a given time.  

In order to reduce the search space, the algorithm attempts to restrict it to distance of predecessors 

or successors from specific node. If there exists no available place in this specified address, the 

algorithm should increment search space by one. In this step, the algorithm checks the possibility 

for each routed to determine whether the selected destination creates a warning map in the future 

of processing mapping or not. For example, FB0 is a high-cost place, because A1 will be mapped in 

the future in this place. If the output of A0 is mapped into FB0, in this case, a conflict will happen, 

and II is increased. Thus, the throughput decreases. In another word, for each FB only two ALUs 

are assigned via a SALU. 

The next node that reads from the ordered list is D0 since it is a direct successor of A0. It is mapped 

to ALU0 because A0 has already been mapped to FB2 during the previous step. This process is 

continued until all the nodes are mapped onto the MSPR. The resulting mapping is shown in 

Figure 4-4. For simplicity, only the relevant routing edges are drawn. It can be seen from this figure 

that each ALU is not used more than once, leading to a unary II, even if the full loop body requires 

three cycles to complete. The final configuration context of the mapping is shown in Figure 4-5. 

When the configuration context of given application is prepared, the assembly code is written for 

each tsm according to FIFOs. The number of tsm should be equal to the number of ALUs. Then 

for this example, we would have 15 programmed tsms to determine the routing data tokens from 

the sources (FIFO banks) to destinations (FIFO banks) through two SALUs.    

In order to implement this application onto the fabric, the written assembly code by the Python is 

used as an input file for WinTim. Thus, WinTim can generate the instruction binary file for 

embedded program memory within the fabric. 
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Figure 4-4-MSPR of Y output of RGB-YcbCr DFG application (II=0). 

 

 

Figure 4-5- Final configuration context 

In order to validate our configuration, the fabric has been manually configured and simulated in 

VHDL. The achieved configuration of the application (RGB-YCbCr) by the ISIM Xilinx tools is 

then simulated. A screenshot of the simulation is illustrated in Figure 4-6. The application is tested 
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for several consecutive inputs data Red, Green, and Blue.  As can be seen from this figure, results 

demonstrate that the 15 ALUs receive process and produce one operation at each clock cycle on 

average, leading to the announced unary II. The results observed at the outputs (Y, Cb, and Cr) 

have also been validated. 

 

Figure 4-6- Simulation Result Based given configuration context for RGB-YCbCr application 

The second example is a 4-point FFT, as shown in Figure 4-7. In this example, we attempt to map 

the DFG in a single tile (8 ALUs). Figure 4-8 illustrates the MSPR obtained at the end of the 

proposed methodology. ALU #0 and #5 have been used twice, leading to II=MII=2.  Figure 4-9 

shows the result simulation FFT4-point onto fabric along with II=2. ½ decreases the obtained 

throughput for this example.  
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Figure 4-7- DFG of a 4-point FFT 

 

Figure 4-8-MSPR of a 4-Point FFT (II=2) 
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Figure 4-9-FFT 4-point Simulation (II=2) 

4.3 Runtime RGB-YCbCr Transform on the CGRA  

This section provides the obtained result to runtime executing an application. The idea to runtime 

executing for the computing fabric is discovered when the system attempts to be configured with 

new data tokens. The first version of the computing fabric architecture is not tailored for runtime 

execution applications. It should be noted that some of the applications can be configured at design 

time. Thus, it is not efficient to implement these applications by a fixed design.  

The proposed architecture in order to runtime executing applications is elaborated, synthesized, 

placed and routed on FPGAs Virtex-5, using XILINX EDK 14.5 tools.  

Two different ways implement the runtime matrix multiplication algorithm (RGB-YCbCr 

transform) on the proposed fabric. First, only the RGB-YCbCr transform is implemented by the 

MicroBlaze. This implementation is totally based on the software, and the application is configured 

in software. The software provides the new data which is predefined in a Block RAM. Then, the 

application is configured with new data periodically after each result. However, the achieved 

throughput may not be efficient for some applications that need to get a result in every few clock 

cycles. The nature of the RISC processor as well as transferring C code to assembly code by C 

compiler result in obtaining low throughput results.   

The second method of RGB-YCbCr transform is implemented by computing fabric which the 

MicroBlaze feeds its data inputs. Computing fabric is implemented as a custom peripheral IP 

attached to the PLB. It has been described in former that the computing fabric is a full pipeline 

parallel computing architecture. Architecture is data-driven, which means that the operations start 
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as soon as the operands are available in the FIFOs that contain the operands. The token data results 

are produced in one clock cycle if and only if data token inputs are available in their ports. 

Based the architecture’s properties, the generated data tokens depends more on the arrival data 

token rates stored in their FIFO banks. Then, application throughput can be directly determined by 

a channel that can receive and transfer data tokens from computing fabric.   

Figure 4-10 shows the block diagram showing that the MicroBlaze is responsible for transferring 

application’s inputs to the computing fabric. The application (RGB-YCbCr) is already well 

configured in computing fabric. Microblaze is ready to transfer data from memory and feed it into 

a FIFO in computing fabric. Data spreading out for application is performed by computing fabric.  

 

Figure 4-10- Block Diagram of Data transferring from Microblaze and computing fabric 

Figure 4-11 shows the clock cycles captured by the chip scope required for MicroBlaze to transfer 

three R-G-B set to the fabric. However, this transferring is not efficient since each transferring 

takes 12 clock cycles, i.e., the computing fabric is free more than 90% of its time. The end point of 
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this result, shown in Figure 4-11 determines for eight different R-G-B, MicroBlaze needs 304 clock 

cycles to feed computing fabric.  

 

Figure 4-11- Capturing data transfer by the chip scope 

  

The data transferring between Microblaze and its custom peripheral IP over PLB could be defined 

as a bottleneck.  Thus, we have decided to change the channel and use the CDMA to access the 

data tokens directly by the computing fabric. In fact, by using CDMA, the MicroBlaze is bypassed, 

and computing fabric can obtain data tokens directly from the block RAM. To this end, CDMA 

takes the controlling of the PLB to transfer the whole predefined data length from BRAM to the 

computing fabric in burst mode. Figure 4-12 shows the eight words transfer by CDMA to the fabric. 

As can be seen from this figure, in each clock cycle one input is launched from memory and 

transferred to the fabric. With this data rate, computing fabric can generate data token in every 

cycle. Maximum throughput is then obtained with this created channel by CDMA.   

 

Figure 4-12- Eight words transferring By DMA to fabric 

The data length is defined in the software and CDMA can transfer this length of data to the 

computing fabric. In fact, data includes three words R-G-B as inputs for implementation RGB-

YCbCr application on the computing fabric. The application is well configured on computing fabric 
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based on proposed methodology, i.e., in every clock cycle, three output Y, Cb, and Cr result if and 

only if the data tokens arrive.  Table 4-1 gives the number of clock cycles required to perform 

RGB-YCbCr application in runtime configuration.   

Table 4-1- require clock cycle to perform RGB-YCbCr application (length is 340 *3 R-G-B). 

Platform Consuming Clocks Cycle   Number of operations 

Microblaze 107436 15300 

Computing fabric using DMA 2172 15300 

The data length is arbitrary selected as 1020 words. Microblaze is taken 107436 clock cycles to 

perform 1020*15 operations while computing fabric consumes 2172 clock cycles to do the same 

operations. As can be seen from this table, The total time to send our 1020 data elements is now 

2172 clock cycles, which takes into account the time to configure the DMA. In this configuration, 

a computer scientist with a pre-synthesized FPGA configured with our proposed architecture would 

obtain a speedup of nearly 50.  

Table 4-2 shows the resources utilization by the proposed architecture on target device platform.  

Table 4-2- Resources Utilizing by computing fabric 2×2. 

 #Slice Registers #Slice LUTs #Occupied Slices DSP48E Slices 

Computing Fabric 23784(24%) 37357(38%) 14153(58%) 42(33%) 

The computing fabric is occupied more resources against the Microblaze while it extremely 

improves the throughput. As another advantage, we can consider that the FIFO’s capacitance in 

computing fabric is eight words. The data length is 1020 words for R-G-B that is transferred into 

the computing fabric’s FIFO. Then, FIFO’s data almost 128 times is reconfigured on runtime 

without the computing fabric needs to be synthesized, placed and routed again.  
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4.4 Conclusion  

As a conclusion, the computing fabric can do runtime execution of applications along with the 

obtains high throughput result. In order to overcome to bandwidth bottleneck of the Microblaze, 

we made a channel using DMA. The channel provides a high-speed data transferring between 

computing fabric which is introduced as custom peripheral IP attached to the PLB. The proposed 

architecture is shown to make the abstracts away from FPGA to high-level design. Easy-to-use and 

flexibility of the proposed architecture have provided an opportunity for those applications 

requiring to be dynamically executed. It has been shown that most of the existing architectures that 

support runtime execution of applications, could only be implemented on a specific platform with 

the user having knowledge about the roles of hardware design. However, the proposed architecture 

has provided a simple and fast method for programmers enabling them to reload new data to their 

applications on hardware by high abstraction level implementation through software. The obtained 

result for RGB-YCbCr application is demonstrated a significant improvement factor of 98% 

compared to the MicroBlaze.  
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CHAPTER 5 CONCLUSION AND FUTURE WORK 

In this thesis, we have introduced a design methodology to automate the process of mapping 

applications onto an FPGA-based computing fabric. The employed fabric has been developed using 

parallel computing and communicating nodes. Although this fabric resembles CGRA, it is data-

driven and has an original communication network that deserves a custom place and route 

methodology. 

 By advancing the FPGA devices, the available resources increase. In other words, the number of 

logic elements, logic blocks, and block memories may increase. While these advancements provide 

more flexibility and capacity for designers, handling these resources will make new issues. The 

resources may adversely affect the systems if careful considerations are not taken into account. 

Thus, the use of available resources and time are two crucial factors in developing algorithms on 

FPGA platform using low-level hardware programming languages such as VHDL and Verilog.   

In this thesis, we have synthesized, placed and routed a coarse-grained reconfigurable architecture 

FPGA according to the Allard’s method. The CGRA provides a solution for designers to utilize the 

current FPGA’s resources more effectively. The CGRA consists of multiple cores running in 

parallel. The proposed method automates the process of mapping applications on the CGRA based 

on the Modulo Scheduling algorithm. It is shown that the proposed solution converges rapidly with 

a low initiation interval.  

Preliminary results, obtained by a manual implementation of the proposed methodology, led to the 

best possible initiation intervals with a high occupation rate of the computing resources in the 

fabric. It has been encouraging since we have obtained better performances than the current state 

of the CGRA and associated tools. It has been shown that the computing fabric precludes any 

complexity of the hardware implementation, yet maintaining flexibility available in the software.  

However, it is known that the existing architecture for computing fabric has reconfigured one time 

per each compile[3]. In other words, to execute an application with new data, the entire system 

needs to be synthesized again. Thus, this process is time-consuming to execute an application with 
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different data. This is mostly due to the fact that this architecture is not tailored for runtime 

executing applications.  

It has been shown that the proposed architecture provides a simple and fast method for 

programmers enabling them to reconfigure their applications on hardware by high abstraction level 

implementation through software. It has also been shown that easy-to-use and flexibility of the 

proposed architecture provide an opportunity to applications requiring to be dynamically executed.  

CGRA in new architecture has defined as a custom peripheral Intellectual Properties (IP). This IP 

is attached to the Processor Local Bus (PLB) where the Microblaze is defined as a microprocessor.  

In order to overcome the possible bottleneck in transferring streaming data between Microblaze 

and computing fabric over PLB, the DMA has been proposed to execute streaming applications on 

the CGRA. 

It should be noted that the application has configured in low latency with high-throughput onto 

computing fabric by the automated mapping methodology. In fact, the computing fabric goes to 

standby until the next data arrives. In view of this, computing fabric was not a good candidate to 

support runtime execution due to its low throughput. In other words, computing fabric capability 

was blocked by its channel to wait for receiving the new data tokens. 

In order to execute the applications at runtime with possible high throughput, a Central Direct 

Memory Access (CDMA) has used. Using the CDMA, the CGRA’s FIFO banks are able to feed 

dynamically with new data token. Then, it leads to supports runtime execution applications through 

CDMA by feeding embedded FIFO banks inside the CGRA. The obtained result shown a 

significant improvement to execute runtime application on the computing fabric. For example, a 

FIFO almost 128 times has recharged with new data through CDMA on runtime without the 

computing fabric needed to be synthesized, placed and routed again.  

Based on this new architecture along with its automated mapping methodology the computing 

fabric is more accessible to support advanced features such as runtime parallelism processing. In 

addition, the automated mapping application gives the advantage of the simplicity and flexibility 

of software development. 
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CHAPTER 6 FUTURE IMPROVEMENT 

In order to improve this work some improvements are listed in the following as future works such 

as:  

1. The proposed method may be automated and optimized in the field of the high-level 

configuration of FPGAs. The proposed method is becoming an appealing option for 

designers since they focus on the application-oriented in the software rather than hardware 

design roles. 

2. We have attached the computing fabric in the new design to the PLB due to that the PLB is 

supported by a different prototype of Xilinx family. Since as we know, to support stream 

data processing the Advanced eXtensible Interface (AXI) is more suitable. But, it is 

supported for a new generation of Xilinx products family. Then, the other improvement 

could transfer the computing fabric from PLB to the AXI to reach higher throughput 

applications.  

3. It is known that the existing architectures have reconfigured one time per each compile. In 

other words, to reconfigure the architecture, the entire system needs to reconfigure again. 

Consequently, this process is time-consuming to execute an application with different 

configurations. This is due to the fact that this architecture is not tailored for run-time 

reconfiguration. In order to runtime reconfiguration of architecture, the token state machine 

will also change by the microprocessor in the runtime instead of the design time. On the 

other hand, the on-line adaptation of application on hardware may permit significant 

acceleration resulting in the flexibility and adaptability of the platform to run time 

application. The online adaptation of application on hardware may be achievable in the 

future works.  
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APPENDIX A – ASSEMBLY CODES FOR PROPOSED ARCHITECTURE 

This appendix gives the required information to write an assembly code for the proposed CGRA. 

The assembly codes write by the Python language. The assembly codes should be covered all 47 

bits of instructions.  

Table Appendix A 1 gives all required bits that can be used in one instruction. For each word on 

the right side of this table, there is a specific word to define its assembly language.  

Table Appendix A 1-Instruction word in token state machine. 

Bits Description 

46-43 Operation 

42-39 Condition 

38 SALU select 

37 Flag modification 

36 Operand A(FIFO Bank/ SALU Buffer) 

35 Deep Reading of Operand A 

34-30 Address Operand A 

29-26 Address deep reading Operand A 

25 Operand B(FIFO Bank/ SALU Buffer) 

24 Deep Reading of Operand B 

23-19 Address Operand B 

18-15 Address deep reading Operand B 

14-12 FIFO bank or SALU destination 
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Table Appendix A 1-Instruction word in token state machine (continued). 

Bits Description 

11 Write to FIFO 

10 Write as double address or choose the buffer 

9-5 Result destination 1 

4-0 Result destination 2 

Bits 46-43 defines the operations. Table Appendix A 2 gives the operation assembly codes.   

Table Appendix A 2-Operation Assembly word. 

Bits 46-43 operation Assembly  

0000 Addition ADD 

0001 Subtraction Minus 

0010 Multiplication Multiple 

0011 Multiplication with truncation  MuTrunc 

0100 Shift Left Logic SLL 

0101 Shift Right Logic SRL 

0110 Shift Right Arithmetic SRA 

0111 AND AND 

1000 OR OR 

1001 XOR XOR 

1010 NOT NOT 
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Table Appendix A 2- Operation Assembly word (continued). 

Bits 46-43 operation Assembly 

1011 FLIP FLIP 

Bits 42-39 as default are set to 0. Each FIFO bank is associated to two SALUs and they can be 

defined by one bit (Bit 38).  Table Appendix A 3 illustrates the corresponding assembly code for 

each state of bit 38.  

Table Appendix A 3- SALU Selection along with its Assembly code. 

Bit 38 Description  Assembly code 

0 Select SALU that is located in left or upside of FIFO banks SaluLeftUp 

1 Select SALU that is located in Right or Downside of FIFO banks SaluRightDown 

Flag modification is set to 0 as a default inside instruction word. Bit 36 defines the operand A 

whether it is in FIFO bank or SALU buffer (Table Appendix A 4). 

Table Appendix A 4- Operand A and corresponding Assembly code. 

 

 

 

 

Bit 35 defines whether the reading operand A from FIFO bank is normal or deep. In deep reading, 

the data token is not removed from FIFO banks. It only makes a copy of data token (operand) and 

sends it to the SALU. The corresponding assembly code for deep reading of operand A is “DeepA”. 

As a default, this bit is 0 and the normal reading is performed.  

Bits 34-30 are responsible for defining where is the operand A as given in Table Appendix A 5.  

Bit 36 Description  Assembly code 

0 Operand A is located in SALU buffer OperandABuff 

1 Operand A is located in FFO bank. OperandA 
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Table Appendix A 5- The address of operand A and corresponding assembly code. 

Bits 34-30 Description Assembly Code 

5B#00000 FIFO number 0 R0 

5B#00001 FIFO number 1 R1 

5B#00010 FIFO number 2 R2 

5B#00011 FIFO number 3 R3 

5B#00100 FIFO number 4 R4 

5B#00101 FIFO number 5 R5 

5B#00110 FIFO number 6 R6 

5B#00111 FIFO number 7 R7 

5B#01000 FIFO number 8 R8 

5B#01001 FIFO number 9 R9 

5B#01010 FIFO number 10 R10 

5B#01011 FIFO number 11 R11 

5B#01100 FIFO number 12 R12 

5B#01101 FIFO number 13 R13 

5B#01110 FIFO number 14 R14 

5B#01111 FIFO number 15 R15 
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Bits 29-26 defines the address for deep reading as given in Table Appendix A 6. As it has been 

mentioned earlier, the FIFO deeps are eight and thus; a user can access to each element of them 

using the deep address. 

Table Appendix A 6- deep reading address and assembly code. 

Bits 29-26 Description Assembly Code 

4B#0000 Element 0 Addeep0 

4B#0001 Element 1 Addeep1 

4B#0010 Element 2 Addeep2 

4B#0011 Element 3 Addeep3 

4B#0100 Element 4 Addeep4 

4B#0101 Element 5 Addeep5 

4B#0110 Element 6 Addeep6 

4B#0111 Element 7 Addeep7 

 

From bits 25- 15 are allocated to the operand B, the assembly codes are the same as operand A. 

The only difference is where the ‘A’ is changed to ‘B’.  

Bits14-12 determines the destination FIFO bank or SALU buffer.  When the destination is the 

SALU buffer and not the FIFO banks, these bits are used to decode the address to correspond each 

buffer in SALU sides. The destination address for each decoder along with their assembly codes 

are given in Table Appendix A 7 . 
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Table Appendix A 7- SALU Buffer as a destination with their assembly codes. 

Bits14-12 Description Assembly codes 

3B#000 Decoder Buffer 0 is the destination Decoder0 

3B#001 Decoder Buffer 1 is the destination Decoder1 

3B#010 Decoder Buffer 2 is the destination Decoder2 

3B#011 Decoder Buffer 3 is the destination Decoder3 

3B#100 Decoder Buffer 4 is the destination Decoder4 

3B#101 Decoder Buffer 5 is the destination Decoder5 

3B#110 Decoder Buffer 6 is the destination Decoder6 

3B#111 Decoder Buffer 7 is the destination Decoder7 

 

Since bits, 14-12 are used to determining FIFO bank as destinations. Table Appendix A 8 gives 

corresponding assembly code to determine the destination address for generated data tokens 

resulted by SALU.  

Table Appendix A 8- FIFO bank destination with assembly codes. 

Bits14-12 Description Assembly codes 

3B#000 FIFO Bank Left from SALU side BankFIFOLeft 

3B#001 FIFO Bank UP from SALU side BankFIFOUP 

3B#010 FIFO Bank Right from SALU side BankFIFORight 

3B#011 FIFO Bank Down from SALU side BankFIFODown 
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Bit 11 determines whether SALU wants to write in FIFO bank or not. To this end, there is assembly 

code ‘WriteFIFO’ that forces ‘1’ to bit 11. Since the destination is not FIFO bank, it is not necessary 

to write in the FIFO bank and then assembly code “NoWriteFIFO” is allocated to this. 

“NoWriteFIFO” is forced ‘0’ to bit 11.  

Bit 10 has two options: first, if the target destination is the FIFO bank and second if the target 

destination is SALU buffer. For each option, the specific assembly code is assigned according to 

Table Appendix A 9 and Table Appendix A 10.  

Table Appendix A 9- Double address with its assembly code. 

Bit 10 as write to FIFO bank Description Assembly Codes 

1B#0 Result send to only one destination Default 0 

1B#1 Result can send to two different destination  BothAddress 

When the address destination is SALU buffer, two buffers are assigned to each decoder that are 

determined by bit 10.  The user can send data tokens to left or right buffers of the predefined 

decoder (by bits 14-12). 

Table Appendix A 10 - select SALU Buffer and its assembly code. 

Bit 10 as write to SALU buffer Description Assembly Codes 

1B#0 Select Buffer Right of SALU BufferRight 

1B#1 Select Buffer left of SALU BufferLeft 

Bits 9-0 determines the destination addresses for which the assembly codes are equivalent to what 

given in Table Appendix A 5.  

There is three extra assembly command codes ‘Next’, ‘TSMNext’ and ‘NoToken’. To separate 

TSM0-7 from each other, the command ‘Next’ is used. ‘TSMNext’ is used when the computing 

fabric has more than one tile.  ‘NoToken’ demonstrates that there are no more instructions in TSM. 
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Figure Appendix A 1 shows a simple code conversion from Python as source code to the assembly 

codes acceptance to computing fabric. Evidently, each small tsm is composed of four instructions. 

When one tsm is not programmed, it should be filled up with ‘NoToken’ and 'Next' command 

separates the tsms.   

                           

 

                                                                           (a) 

                                 

     

                                                                       (b) 

Figure Appendix A 1- Simple example of create assembly code, a) Python language b) assembly 

codes 
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APPENDIX B – WINTIM32 

 

Figure Appendix B 1-Instruction formats and mnemonic names definition file by WinTim32 
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Figure Appendix B 2-  Generated VHDL file for one TSM by WinTim 


