167 research outputs found

    Multi-Stream LDPC Decoder on GPU of Mobile Devices

    Get PDF
    Low-density parity check (LDPC) codes have been extensively applied in mobile communication systems due to their excellent error correcting capabilities. However, their broad adoption has been hindered by the high complexity of the LDPC decoder. Although to date, dedicated hardware has been used to implement low latency LDPC decoders, recent advancements in the architecture of mobile processors have made it possible to develop software solutions. In this paper, we propose a multi-stream LDPC decoder designed for a mobile device. The proposed decoder uses graphics processing unit (GPU) of a mobile device to achieve efficient real-time decoding. The proposed solution is implemented on an NVIDIA Tegra board as a system on a chip (SoC), where our results indicate that we can control the load on the central processing units through the multi-stream structure

    Towards a reconfigurable hardware architecture for implementing a LDPC module suitable for software radio systems

    Get PDF
    Forward Error Correction is a key piece in modern digital communications. When a signal is transmitted over a noisy channel, multiple errors are generated. FEC techniques are directed towards the recovery of such errors. In last years, LDPC (Low Density Parity Check) codes have attracted attention of researchers because of their excellent error correction capabilities, but for actual radios high performance is not enough since they require to communicate with other multiple radios too. In general, communication between multiple radios requires the use of different standards. In this sense, Software Defined Radio (SDR) approach allows building multi standard radios based on reconfigurability abilities which means that base components including recovery errors block must provide reconfigurable options. In this paper, some open problems in designing and implementing reconfigurable LDPC components are presented and discussed. Some features of works in the state of the art are commented and possible research lines proposed

    Exploring High Level Synthesis to Improve the Design of Turbo Code Error Correction in a Software Defined Radio Context

    Get PDF
    With the ever improving progress of technology, Software Defined Radio (SDR) has become a more widely available technique for implementing radio communication. SDRs are sought after for their advantages over traditional radio communication mostly in flexibility, and hardware simplification. The greatest challenges SDRs face are often with their real time performance requirements. Forward error correction is an example of an SDR block that can exemplify these challenges as the error correction can be very computationally intensive. Due to these constraints, SDR implementations are commonly found in or alongside Field Programmable Gate Arrays (FPGAs) to enable performance that general purpose processors alone cannot achieve. The main challenge with FPGAs however, is in Register Transfer Level (RTL) development. High Level Synthesis (HLS) tools are a method of creating hardware descriptions from high level code, in an effort to ease this development process. In this work a turbo code decoder, a form of computationally intensive error correction codes, was accelerated with the help of FPGAs, using HLS tools. This accelerator was implemented on a Xilinx Zynq platform, which integrates a hard core ARM processor alongside programmable logic on a single chip. Important aspects of the design process using HLS were identified and explained. The design process emphasizes the idea that for the best results the high level code should be created with a hardware mindset, and written in an attempt to describe a hardware design. The power of the HLS tools was demonstrated in its flexibility by providing a method of tailoring the hardware parameters through simply changing values in a macro file, and by exploration the design space through different data types and three different designs, each one improving from what was learned in the previous implementation. Ultimately, the best hardware implementation was over 56 times faster than the optimized software implementation. Comparing the HLS to a manually optimized design shows that the HLS implementation was able to achieve over a 19% throughput, with many areas for further improvement identified, demonstrating the competitiveness of the HLS tools

    State of the art baseband DSP platforms for Software Defined Radio: A survey

    Get PDF
    Software Defined Radio (SDR) is an innovative approach which is becoming a more and more promising technology for future mobile handsets. Several proposals in the field of embedded systems have been introduced by different universities and industries to support SDR applications. This article presents an overview of current platforms and analyzes the related architectural choices, the current issues in SDR, as well as potential future trends.Peer reviewe
    • …
    corecore