1,790 research outputs found

    GAN Augmented Text Anomaly Detection with Sequences of Deep Statistics

    Full text link
    Anomaly detection is the process of finding data points that deviate from a baseline. In a real-life setting, anomalies are usually unknown or extremely rare. Moreover, the detection must be accomplished in a timely manner or the risk of corrupting the system might grow exponentially. In this work, we propose a two level framework for detecting anomalies in sequences of discrete elements. First, we assess whether we can obtain enough information from the statistics collected from the discriminator's layers to discriminate between out of distribution and in distribution samples. We then build an unsupervised anomaly detection module based on these statistics. As to augment the data and keep track of classes of known data, we lean toward a semi-supervised adversarial learning applied to discrete elements.Comment: 5 pages, 53rd Annual Conference on Information Sciences and Systems, CISS 201

    Data augmentation using generative adversarial networks for electrical insulator anomaly detection

    Get PDF
    Master of ScienceDepartment of Computer ScienceWilliam H. HsuElectricity has been an essential part of our life. Insulators, which are widely used for electricity transmission, are prone to be damaged and need constant maintenance. Traditionally, the inspection job is time-consuming and dangerous as workers would have to climb up the electricity tower. Deep learning has offered a safe and quick way to inspections. About 3000 insulators images are taken from different angles using a drone. Due to great difference in number of good and damaged insulator, directly training a classifier on the imbalanced data lead to low recall value on the damaged insulators. Generative adversarial networks (GANs) were introduced as a novel way to augment data. However, traditional GANs are either incapable of generating high quality images or fail to generate minority class images when minority class examples are far less. In this study, a novel GAN model, Balancing and Progressive GANs (BPGANs), was proposed for effectively making use of all classes information and generating high quality minority images at the same time. Results show that PGANs, StyleGANs, and BPGANs were able to generate high-resolution images and improve classification performance. PGANs achieved the better results than BPGANs. This may be because BPGANs only provides 2 additional latent codes since it is a binary classification, having little effect on generating desired images. BPGANs seemed to have difficulties generating class-specific images, which might be because that the classification loss is too little compared to the source loss and optimization was more focused to optimize the source loss. This indicates that learning representations of data progressively from low resolution to high resolution is an effective approach, however, embedding class label information in the fashion of AC-GANs and BGANs might not be appropriate for augmenting binary class data sets

    In-painting Radiography Images for Unsupervised Anomaly Detection

    Full text link
    We propose space-aware memory queues for in-painting and detecting anomalies from radiography images (abbreviated as SQUID). Radiography imaging protocols focus on particular body regions, therefore producing images of great similarity and yielding recurrent anatomical structures across patients. To exploit this structured information, our SQUID consists of a new Memory Queue and a novel in-painting block in the feature space. We show that SQUID can taxonomize the ingrained anatomical structures into recurrent patterns; and in the inference, SQUID can identify anomalies (unseen/modified patterns) in the image. SQUID surpasses the state of the art in unsupervised anomaly detection by over 5 points on two chest X-ray benchmark datasets. Additionally, we have created a new dataset (DigitAnatomy), which synthesizes the spatial correlation and consistent shape in chest anatomy. We hope DigitAnatomy can prompt the development, evaluation, and interpretability of anomaly detection methods, particularly for radiography imaging.Comment: Main paper with appendi

    Temporal Cues from Socially Unacceptable Trajectories for Anomaly Detection

    Get PDF
    • …
    corecore