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Abstract

Electricity has been an essential part of our life. Insulators, which are widely used for

electricity transmission, are prone to be damaged and need constant maintenance. Tradi-

tionally, the inspection job is time-consuming and dangerous as workers would have to climb

up the electricity tower.

Deep learning has offered a safe and quick way to inspections. About 3000 insulators

images are taken from different angles using a drone. Due to great difference in number of

good and damaged insulator, directly training a classifier on the imbalanced data lead to

low recall value on the damaged insulators. Generative adversarial networks (GANs) were

introduced as a novel way to augment data. However, traditional GANs are either incapable

of generating high quality images or fail to generate minority class images when minority

class examples are far less.

In this study, a novel GAN model, Balancing and Progressive GANs (BPGANs), was

proposed for effectively making use of all classes information and generating high quality mi-

nority images at the same time. Results show that PGANs, StyleGANs, and BPGANs were

able to generate high-resolution images and improve classification performance. PGANs

achieved the better results than BPGANs. This may be because BPGANs only provides

2 additional latent codes since it is a binary classification, having little effect on generat-

ing desired images. BPGANs seemed to have difficulties generating class-specific images,

which might be because that the classification loss is too little compared to the source loss

and optimization was more focused to optimize the source loss. This indicates that learning

representations of data progressively from low resolution to high resolution is an effective ap-

proach, however, embedding class label information in the fashion of AC-GANs and BGANs

might not be appropriate for augmenting binary class data sets.



Table of Contents

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.4 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Deep Learning for Image Classification . . . . . . . . . . . . . . . . . . . . . 4

2.1.1 Overview of Convolutional Neural Networks . . . . . . . . . . . . . . 5

2.1.2 AlexNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.3 VGG Nets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.4 GoogLeNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.5 ResNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.6 DenseNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Generative Adversarial Networks . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.1 GANs for Generating High Resolution Images . . . . . . . . . . . . . 10

2.2.2 Conditional GANs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1 Embedding Class Label . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

iv



3.2 Generating High Quality Images . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.3 BPGANs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.1 Data set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.2 DNNs for Classifying Insulators . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.3 BGANs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.4 AC-GANs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.5 PGANs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.6 StyleGANs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.7 BPGANs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5.1 Results on GANs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5.1.1 BGANs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5.1.2 AC-GANs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5.1.3 StyleGANs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5.1.4 PGANs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5.1.5 BPGANs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5.2 Image Qaulity Assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5.3 Image Diversity Assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.4 Classification Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

6 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

6.1 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

v



List of Figures

2.1 Architecture of AlexNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Architecture of VGG-19 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Architecture of Inception Layer in GoogLeNet . . . . . . . . . . . . . . . . . 8

2.4 Architecture of Residual Block . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.5 Architecture of DenseNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.6 Architecture of GANs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.1 Architecture of BPGANs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.1 Examples of Insulators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5.1 Damaged Insulator Examples Imagined by BGANs . . . . . . . . . . . . . . 21

5.2 Damaged Insulator Examples Imagined by AC-GANs . . . . . . . . . . . . . 22

5.3 Damaged Insulator Examples Imagined by StyleGANs . . . . . . . . . . . . 23

5.4 Damaged Insulator Examples Imagined by PGANs . . . . . . . . . . . . . . 23

5.5 Damaged Insulator Examples Imagined by BPGANs . . . . . . . . . . . . . 24

5.6 Successful Identification Rate of Damaged Insulators Gneerated by Different

GANs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.7 SSIM among Images Produced by GANs . . . . . . . . . . . . . . . . . . . . 26

5.8 Successful Identification Rate of Damaged Insulators Gneerated by Different

GANs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.9 Successful Identification Rate of Damaged Insulators Gneerated by Different

GANs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

vi



Acknowledgments

Thanks to Black and Veatch for providing original insulator images and the K-State

Laboratory for Knowledge Discovery in Databases for providing annotated images and com-

puting power to conduct the experiments in this study. Thanks to my advisor for tremendous

help in advising my research.

vii



Chapter 1

Introduction

This chapter introduces a visual anomaly detection task in the general application area of

power system component inspection, and discusses the issue of class imbalance and the need

for data augmentation for this task. I then present two approaches, data balancing and

style transfer, and discuss the problem of combining these approaches in a single generative

model.

1.1 Overview

There is a huge demand for electricity in the U.S. In 2018 U.S. net electricity generation

increased by 4% in 2018, reaching a record high of 4,178 million megawatthours (MWh),

surpassing once again the pre-recession peak of 4,157 million MWh set in 2007. Both the

residential (about 1,500 MWh) and commercial sectors (about 1,400 MWh) reached all-

time highs for retail sales of electricity in 20181. Power cuts can cause major losses of

productivity, safety, and resources, and consequent economic loss, to all sectors of society.

According to the report from the U.S. Energy Information Administration in 20132, between

2003 and 2012, an estimated 679 widespread power outages occurred due to severe weather.

Power outages close schools, shut down businesses and impede emergency services, costing

the economy billions of dollars and disrupting the lives of millions of Americans. Therefore,
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regular inspections are required to prevent faults that cause power outage. Visual inspections

on transmission lines is the common way to maintain electricity supply. They are usually

carried out by skilled worker foot-patrolling or using helicopter-assisted methods3, which is

costly and risky.

Many efforts have been made to help inspect electrical transmission lines more efficiently.

Drones and robots that are capable of patrolling are made to increase inspection safety and

lower costs4–6. After images and videos are collected from robots, trained workers spend huge

amounts of time to analyze these images in order to recognize any faults. This obviously

is time-consuming and prone to human bias. To reduce the human bias and better classify

insulators, new approaches should be explored.

1.2 Motivation

Significant advances have been seen in the field of deep learning in recent years. Various types

of deep neural networks have achieved great success in various computer vision tasks, such

as image classification7–9 and object detection10–12. One of the drawbacks of deep learning

methods is that they generally require huge amount of data in order to classify insulators.

When training examples are not sufficient, there are several approaches to augmenting data,

including image oversampling, random rotation, shifts, and etc. However, traditional data

augmentation techniques do not improve the results significantly13. In addition to limited

data sets, class imbalance also creates many problems for neural network classifiers14. Thus,

it is necessary to propose new strategies to enrich data sets and mitigate data imbalance

issues.

1.3 Problem Statement

In recent years, generative modeling, as a more promising approach to data augmentation,

has emerged as an effective methodology. In particular, a type of neural network called

generative adversarial networks (GANs) was first introduced in 201415. Since then, various
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GAN extensions were proposed, such as CycleGANs, DCGANs, and Progressively-Growing

GANs16–18. GANs have shown superior results compared to traditional data augmentation

techniques as they are capable of imaging different alterations to images such that they have

a better understanding of them14. However, these GANs might not work well when data sets

suffer from excessively severe class imbalance, because they are trained on the minority class

examples for generating new examples, and GANs are not likely to learn well from a minority

class that has very few examples. In order to mediate the class imbalance issue , another

branch of research has been focusing on developing the conditional version of GANs19–21,

aiming to include class label in GANs training. However, these conditional version of GANs

generally works well with relatively low resolution data set, such as images whose size are

64× 64 or 128× 128.

1.4 Objectives

To overcome the limitations of existing GANs, we need to assess the specific technical

strengths of various GAN-based models for data augmentation and propose new approaches

based on the limitations. Thus, the objectives of this study include:

• Train a classifier using deep neural network on the original data set, which is not

augmented and is imbalanced, to classify damaged insulators against good insulators.

The classification performance results can serve as a baseline.

• Train various GANs models to augment and balance the data set. Then, train the

same classifier on the augmented data set and compare the classification performance

against the baseline from the previous step.

• Propose and develop a new model that is able to make use of both majority and

minority class information when training so that it works well even when the number

of minority class examples is scarce. The model is also capable to generate high quality

examples for all categories.
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Chapter 2

Background

2.1 Deep Learning for Image Classification

Image classification can be defined as the task of assigning images to predefined categories.

Traditionally, human-crafted features were first extracted from images using feature descrip-

tors, such as statistical information about pixels. These features then served as input to

trainable algorithms. The most obvious disadvantage of this approach is that the success

of the classifier depends highly on the design of handcrafted features, which is usually a

formidable task22;23.

Major advances have been seen in the field of deep learning in recent years. Various types

of deep neural networks (DNN) have achieved great success in image classification7–9. Com-

pared to traditional classification approaches, DNNs are capable of automatically extracting

features from images, and thus greatly reduce or eliminate dependence on expert-crafted

features.

The most significant advance, which has captured intense interest in DNNs, especially

for image classification tasks, was achieved in the ImageNet Large Scale Visual Recognition

Challenge (ILSVRC) 201224 by Krizhevsky et al. (2012).25 They used a DCNN to classify

approximately 1.2 million images into 1000 classes, with record-breaking results. Since then,

DNNs have dominated subsequent versions of the ILSVRC and, more specifically, its image
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classification component26 27.

2.1.1 Overview of Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are feedforward networks where inputs and inter-

mediate results flow in one direction from an input image to class prediction for image

classification tasks. Even though CNNs vary in the architectures, CNNs consist of several

common building blocks, including convolution, activation, pooling layers. These building

blocks form a basic module that is often stacked on top of each other to form a deep model.

The convolutional layers can be used as feature extractors and they are able to learn fea-

ture representations from input neurons. Each neuron in the feature map has a receptive

field, which connects to neighborhood neurons from the previous neurons through connected

weights. Neurons convolve with weights and are usually activated with non-linear activation

functions. All neurons within a feature map have weights that are constrained to be equal.

The pooling layers are used to reduce dimensions of the feature maps and achieve spatial

invariance to input distortions and translations28. Average pooling was used to be widely

used to propagate the average of input values, but more recent studies25–27;29 showed that

max pooling layers yield better results as they propagate the maximum value within a re-

ceptive field to the next layer. Fully connected layers are usually positioned at the last a few

layers in CNN. Features are propogated via stacks of convolutional layers and pooling layers,

and the connected layers that follow these layers interpret these feature representations and

perform the function of high-level reasoning26;27.

2.1.2 AlexNet

The AlexNet7 was proposed by Alex Krizhevesky and others in 2012. It achieved state-of-

the-art recognition accuracy against all the traditional machine learning and computer vision

approaches in ImageNet Large Scale Visual Recognition Challenge (ILSVRC). It was a big

breakthrough and turning point where interest in deep learning increased rapidly.

AlexNet consists of five convolutional blocks (See Figure 2.1), each of which performs
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Figure 2.1: Architecture of AlexNet

convolution, max pooling, and local response normalization on the input. The Local Re-

sponse Normalization (LRN) can be used in two ways. It can be applied on single channel or

feature maps, where an N ×N patch is selected from the same feature map and normalized

based on the neighborhood values. LRN can also be applied across the channels or feature

maps. Three convolutional blocks are followed by two fully connected layers. Similar to

other CNN models that be applied to classify images, the last layer is a softmax layer.

2.1.3 VGG Nets

The Visual Geometry Group (VGG) achieved 2nd place in the 2014 ILSVRC30. The major

contribution is that it shows the depth of CNN plays a vital role in order to achieve better

recognition or classification accuracy. The VGG net features 2 convolutional layers with

ReLU activation function, which is followed by a max pooling layer. The last four layers of

VGG net are three fully connected layers and a single softmax layer classifying the images.

There are three different sub-versions of VGG net, which are VGG-11, VGG-16, and VGG-19

(See Figure 2.2). They consist of 11, 16, 19 convolutional layers respectively.

2.1.4 GoogLeNet

GoogLeNet8 won the 2014 ILSVRC30. The model was proposed with the purpose of reducing

computation complexity compared to the traditional CNN. The model incorporates inception
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Figure 2.2: Architecture of VGG-19

layers which have variable receptive fields with different kernel sizes. These receptive fields

is able to capture sparse correlation patterns in the new feature map stack. The idea of

inception layer is that the previous layer goes through a 1×1 convolution, 3×3 convolution,

5×5 convolution and a 3×3 max pooling operations, each of the which is then concatenated to

output the final result. Figure 2.3 shows the structure of inception layer. A stack of inception

layers were used in GoogLeNet. The 1×1 convolution kernels allowed for dimension reduction

before computationally expensive layers. GoogLeNet has 22 inception layers in total.

2.1.5 ResNet

The Residual Network (ResNet) architecture9 won the first place in ILSVRC 2015. The idea

of ResNet is to design very deep networks that do not suffer from the vanishing gradient

problems. There are several different versions of ResNet, which have different number of

layers. The major difference between ResNet and traditional CNN is the residual layer. The

output of residual layer then goes through a set of common operations, including convolution

with different sizes of filters and Batch Normalization (BN), followed by application of a

7



Figure 2.3: Architecture of Inception Layer in GoogLeNet

ReLU activation function. The final output of the residual layer is additively computed from

the previous layer and the result from a series of operations. The entire ResNet consists

of several residual blocks. Different modifications on the original ResNet were proposed.

Zagoruvko et al.31 proposed a wider version of ResNet. Aggregated residual transformation32

was proposed to improve the ResNet architecture.

2.1.6 DenseNet

DenseNet33 was proposed by Gao et al. The model has densely connected CNN layers, the

output of which are concatenated with all successor layers in a dense block. This architecture

is efficient for feature reuse, which can greatly reduce network parameters. It features several

dense blocks and transition blocks, which are placed between two adjacent dense blocks.

Figure 2.5 shows the architecture of DenseNet.
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Figure 2.4: Architecture of Residual Block

Figure 2.5: Architecture of DenseNet
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2.2 Generative Adversarial Networks

Generative models are designed to model and reproduce the statistical distribution of the

training data, allowing the synthes of data from the learned distribution. The key incentive

behind GANs is estimating the underlying probability density or probability mass function

of the observed data. GANs learn the probability distribution implicitly by computing

the similarity of the distribution between the real training examples and the ”fake” data

generated by the learned model. After the model is trained well, it naturally can be used to

generate data that have similar distribution as the real data.

GANs typically consist of a generator and a discriminator. The two compete against

one another: the generator tries to fool the discriminator by producing ”fake” data and the

discriminator aims to distinguish the ”fake” data from the real data. The general architecture

is shown in Figure 2.1. The learning process is guided by a minmax game (See Equation 2.1)

where the discriminator (D) desires to increase the probability of classifying images as real

when they (x) are sampled from the real distribution (pdata(x)). Meanwhile, the generator

(G) wishes to decrease the likelihood of generated images as real when images are sample

from the ”fake” distribution (pz(z)). As learning progresses, the discriminator gets better

at classifying the data being real or not, and the generator becomes better at producing

”realistic” data. Naturally, the generator can then be used to generate data when training

examples are not sufficient.

min
G

max
D

V (D,G) = E
x∈pdata(x)

[logD(x)] + E
z∈pz(z)

[log(1−D(G(z)))] (2.1)

2.2.1 GANs for Generating High Resolution Images

GANs have difficulties in generating high resolution images as they make it easier for the

discriminator to distinguish the ”fake” images among the training data. High-resolution data

also prevents from using larger minibatches due to GPU memory limitations and thus com-
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Figure 2.6: Architecture of GANs

promising training stability18;19. Based on the work of Wang et al. (2017)34, Durugkar et al.

(2016)35, and Hierarchical GANs36–38, Karras et al. (2018)18 proposed progressively-growing

GAN, whose key idea is to grow both the generator and discriminator progressively, start-

ing from easier low-resolution images, and add new layers that introduce higher-resolution

details. This speeds up training and improves stability in high resolution images. Following

the trace of progressively-grow GAN and the idea of style transfer, Karras et al. (2019)39

proposed a style-based generator for GANs. It features an automatically learned, unsuper-

vised separation of high-level attributes and stochastic variation in the generated images,

which enables intuitive, scale-specific control of the image synthesis.

2.2.2 Conditional GANs

Another branch of research focuses on the conditional version of GANs20;21;40, which aims to

embed label information into GANs training process. Conditional GANs20 incorporate labels

into both generator and discriminator by modelling the conditional probability of logD(x|y)

and log(1−D(G(z|y))). As a result, the objective function in Equation 1 is slightly modified

into the conditional form (See Equation 2.2).
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min
G

max
D

V (D,G) = E
x∈pdata(x)

[logD(x|y)] + E
z∈pz(z)

[log(1−D(G(z|y)))] (2.2)

Mariani et al,.(2018) proposed Balancing GANs (BGANs)21 as an augmentation tool to

restore balance in imbalanced data sets. They argued that the few minority-class examples

may not be enough to train a GAN, so they incorporated all available images of majority and

minority classes. BGANs try to achieve class balance by applying class conditioning in the

latent space to drive the generation process towards the target class. BAGAN features an

autoencoder that learns an accurate class-conditioning in the latent space and then initializes

the generator with the encoder of the autoencoder.

Odena et al. 2017 proposed Auxiliary Classifier GANs(AC-GANs)41, which models the

probability distribution of class labels in addition to the original objective of GANs. The

objective of AC-GANs consists of two parts: the loglikelihood of the correct source, LS, and

the log-likelihood of the correct class, LC :

LS = E[logP (S = real|Xreal)] + E[logP (S = fake|Xfake)] (2.3)

LC = E[logP (C = c|Xreal)] + E[logP (C = c|Xfake)] (2.4)

D is trained to maximize LS + LC while G is trained to maximize LC − LS. AC-GANs

learn a representation for z that is independent of class label.

12



Chapter 3

Methodology

As mentioned in Chapter 1, existing GANs cannot produce high resolution images and embed

class label information at the same time. In order to address this limitation, I proposed a

new GAN model, which I refer to as Balancing and Progressively Growing GANs (BPGANs)

after the existing indpendent classes of Balancing GANs (BGANs) and Progressive Growing

of GANs (PGANs).

3.1 Embedding Class Label

Through Conditional GANs20, a novel method of embedding class labels was developed.

Conditional GANs incorporate labels into both the generator and the discriminator by mod-

elling the conditional probability of logD(x|y) and log(1 − D(G(z|y))) (See Equation 2.2).

BPGANs follow the same method on incorporating class label information. In the work

of AC-GANs41, the model embeds the class label information by having an extra classifier

to predict which class images that are fed to discriminator belongs to. Inspired by this

AC-GANs, BPGANs will adopt similar approaches.

13



3.2 Generating High Quality Images

Karras et al. (2018)18 proposed Progressive Growing of GANs (PGANs), whose key idea

is to grow both the generator and discriminator progressively, starting from easier low-

resolution images, and add new layers that introduce higher-resolution details. This speeds

up training and improves stability in high resolution images. Following the trace of PGANs,

the BPGANs model adopts the same strategy.

3.3 BPGANs

Motivated by AC-GANs and PGANs, the proposed BPGANs model will model class condi-

tional distribution as well as generating more resolution images. The architecture of BPGANs

is shown in Figure 3.1, where both generator and discriminator both are trained from low

resolution to a resolution of 512× 512 and label information is provided during training.
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Figure 3.1: Architecture of BPGANs
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Chapter 4

Experiments

In this chapter, I discuss the data set, how to split data set into training, validation, and test

data set. A deep neural network was trained on the non-augmented data setas a classifier

to distinguish good insulators against damaged insulators. This classifier will be used as

the baseline for comparing the performance of various GANs on data augmenting. Next,

several GANs will be trained to augment existing insulators data set. In the end, I train

the proposed BPGANs model. In the next chapter, I will compare resutls of different GANs

model.

As mentioned in Chapter 1, existing GANs cannot produce high resolution images and

embed class label information at the same time. In order to address this limitation, a

new GANs model, which I call Balancing and Progressively Growing GANs (BPGANs), is

proposed.

4.1 Data set

Drones, specifically unmanned aerial vehicles (UAVs), were used to take images of insulators.

Some examples of insulators are shown in Figure 4.1. Raw insulator images were then

annotated with each individual insulator being labeled as damaged or undamaged. Next,

images were cropped and 3,861 individual insulators were obtained in total, among which
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Figure 4.1: Examples of Insulators

2,972 are good insulators and the rest of 989 insulators are damaged. 80% of images were

used as training data set and the rest was equally split as validation and test data set.

4.2 DNNs for Classifying Insulators

To establish a baseline, I trained a simple DNN on the original non-augmented data set.

The DNN model consists of 9 convolutional blocks, before each one of which batch nor-

malization was applied on the input. THe ReLU activation function was used after each

convolution layer, and softmax was applied to reduce the dimensions of the output. The

model was trained using stochastic gradient descent (SGD) on with batches of size 16, with

the momentum set to 0.9 and the learning rate to 0.001.

17



4.3 BGANs

As discussed in the previous chapter, a VAE was first trained to obtain a dense representation,

which was then used for sampling for the latent vector when training the BGANs model.

Each VAE was trained for 4,000 iterations and Adam optimizer was used with learning rate

of 0.001.

After the VAEs were trained, latent vectors of size 512 are sampled from a normal distri-

bution with means and standard deviations of damaged and good insulators. The BGANs

model was trained for 10,000 iterations and Adam optimizer was used to optimize the pa-

rameters with learning rate set to 0.002.

4.4 AC-GANs

AC-GANs not only supplies both the generator and discriminator with class labels, but also

includes a classifier to classify the image category. This model produces good results and

appears to stabilize training compared to the standard GAN formulation. Adam optimizer

was used to train the model with initial learning rate set to 0.0001 and decayed after 200

iterations. The batch size, largely determined by the available GPU memory, is set to 16.

The model was trained for 2,000 epochs.

4.5 PGANs

The key idea of PGANs is to grow both the generator and discriminator progressively,

starting from easier low-resolution images (4×4), and add new layers that introduce higher-

resolution details (eventually 1024× 10244). This speeds up training and improves stability

in high resolution images. The model was trained on batches of 4 images. The final resolution

of images is 512 × 512, so there is one less scale training compared to the orginal PGANs

implementation whose final resolution is 1024× 10244. The model was trained at resolution

from 4×4, 8×8, up to 512×512, and each was scale was trained with 48,000, 96,000, 96,000,
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..., 96,000 iterations respectively.

4.6 StyleGANs

StyleGANs is proposed based on PGANs. The modification is that instead of feeding the

original latent vector into the generator, a block of dense layers are applied on the latent

vector to learn what the authors called the intermediate latent vectors, and then the in-

termediate latent vectors are fed into the generator. At each scale of training, an affine

transformation was applied on the intermediate latent vector as a way to learn some sort of

style before feeding into the generator. The architecture of the generator and discriminator

of StyleGANs are same of PGANs. The model was trained on batches of 7 images. Adam

optimizer was used with learning rate set to 0.0015 and decayed after 200 iterations.

4.7 BPGANs

BPGANs combine the advantages from AC-GANs and PGANs, which is able to embed

class label information into training as well as producing high resolution images. Similar to

AC-GANs, BPGANs embed class labels by including an extra classifier. The generator and

discriminator progressively grow from an image size of 4× 4 up to 512× 512. The training

settings for the BPGANs are the same as those for the PGANs.
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Chapter 5

Results

In this section, I discuss the results of different models from the previous chapter, including

a classifier trained on the original, unbalanced data set and results from several GANs

models. In order to evaluate the images generated by GANs qualitatively and quantitatively,

similarity indices were calculated to evaluate how diverse and clear of the generated images

are.

GANs were trained with the purpose of augmenting the unbalanced data set, so different

GANs were then used to balance the original data set. Next, the same classifier was trained

on different versions of augmented data set and classification results were compared against

the original data set.

5.1 Results on GANs

5.1.1 BGANs

The final output image resolution is 512× 512, and the generated images from BGANs are

very blurry as BGANs are originally designed to produce image size of 64 × 64. Several

examples of generated damaged insulators are shown in Figure 5.1.
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Figure 5.1: Damaged Insulator Examples Imagined by BGANs

5.1.2 AC-GANs

Three examples of damaged insulators produced by AC-GANs are shown in Figure 5.2. AC-

GANs produced images that have better quality than that of BGANs, but they are still

blurry and difficult. to distinguish damaged versus good insulators. This might be owing

to that the classification loss was dominated by the source loss and much optimization was

done to decrease the source loss.

5.1.3 StyleGANs

Compared to images generated by BGANs, StyleGANs was able to produce images with

much higher quality. Four examples are shown in Figure 5.3, where the first three images

are of better quality and the last one is one of the poorly-produced image examples.

5.1.4 PGANs

PGANs was able to produce images with similar quality as StyleGANs. Four examples are

shown in Figure 5.4, where the first three images are of better quality and the last one is

one of the poorly-produced image examples. Compared to images generated by StyleGANs,

PGANs seem to be able to produce images with better image quality, where flash-overs are

more clear to spot.
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Figure 5.2: Damaged Insulator Examples Imagined by AC-GANs
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Figure 5.3: Damaged Insulator Examples Imagined by StyleGANs

Figure 5.4: Damaged Insulator Examples Imagined by PGANs

23



Figure 5.5: Damaged Insulator Examples Imagined by BPGANs

5.1.5 BPGANs

BPGANs produced mixed results. Some damaged insulators are shown in Figure 5.5. (a)

and (b) look like damaged insulators. (c) seems to be a good insulators and (d) and (e)

are pretty blurry. The reason that quite a few damaged insulators imagined by BPGANs

look like good insulators might be because the classification loss is too small in magnitude

compared to source loss, which measures the difference between real or fake images shown

to the discriminator. Compared to StyleGANs and PGANs, BPGANs also tend to produce

more blurry images.

5.2 Image Qaulity Assessment

In order to assess the quality of generated images from GANs, the images were evaluated by

the trained classifier. The rational behind this assessment strategy is that what percentages

of GANs-generated damaged data the classifier thinks are actually damaged. The results

from different GANs are summarized in Figure 5.6. From the graph we can see that the

trained classifier only classify nearly 30% of damaged insulators produced by BGANs as

damaged, which makes sense as the images quality of the generated images are very blurry.
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Figure 5.6: Successful Identification Rate of Damaged Insulators Gneerated by Different
GANs

StyleGANs and PGANs produce much better image quality, and as a result more images are

recognized as damaged by the classifier. The results showed that PGANs produced the best

image quality among all four GANs models.

5.3 Image Diversity Assessment

In order to assess the images generated by GANs visually, I verified whether the generated

images are merely copies of the training images and if the images have few modes, meaning

they are close to one another. Two comparison schemes were adopted. First, I compared

how similar the generated images are to the training set by randomly selecting 100 produced

images, and then selecting the 100 closest images to the training set by calculating the
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Figure 5.7: SSIM among Images Produced by GANs

structural similarity (SSIM) index. Finally, I calculated the mean value of SSIM values.

Next, 100 images were selected randomly from the generated poll. 100 closet images to

the training set were chosen by calculating the SSIM values. Then, 100 closest images of

the selected real images to the training set were selected. Eventually, the two sets of SSIM

values were compared.

Figure 5.7 showed that maximum value and standard error of SSIM for different GANs.

The results showed that the similarities among different sets of generated images are very

low, indicating the modes of the images are of great diversity. Figure 5.8 showed that the

images produced by GANs are not close to the training images, and thus not simply copies

of the training set.
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Figure 5.8: Successful Identification Rate of Damaged Insulators Gneerated by Different
GANs

5.4 Classification Results

The ultimate goal of this study was to utilize GANs to augment and balance the data set

in hope that a better classifier can be obtained to distinguish damaged insulators and good

insulators. Therefore, the final assessment would be to train the same classifier on the

augment the data set, observing if the classification performance would increase or not.

Figure 5.9 shows that the f1 scores and classification accuracy improved for all GANs,

expect for the BGANs, compared to the classifier trained on the original classifier. Results

show that classifier trained on data set augmented by PGANs achieved highest f1 score and

accuracy.
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Figure 5.9: Successful Identification Rate of Damaged Insulators Gneerated by Different
GANs
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Chapter 6

Conclusion and Future Work

6.1 Summary and Conclusions

This work has introduced Balancing and Progressively Growing GANs (BPGANs), a new

hybrid architecture for generative adversarial modeling of visual anomalies, that combines the

problem of class balancing from that of transferring surface detail by class. Results applying

BPGANs to the domain of electrical insulator inspection, where some types of damage can be

determined from outdoor external views, suggest potential for BGAN/PGAN hybridization

in visual anomaly detection.

Power systems are of great importance to mechanization across all aspects of society,

and thus regular electrical inspections are needed. Recent advances in deep learning has

offered viable approaches to automate inspection jobs. However, data availability can restrict

how deep learning can be successful applied. Generative adversarial networks are capable

of learning good representations of images and generate newly imaged ones based on the

learned representation. Therefore, in this study, extensive experiments have been conducted

on generating images, especially damage insulators, based on GANs.

Results show that BGANs and AC-GANs are able to combine class label during training,

and thus provide more information guiding the generation of damaged insulators. However,

they are designed to produce relative low-resolution images, and thus images generated are
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blurry and even sabotage the classifier when augmenting the data set with images produced

by them. StyleGANs and PGANs are capable to generate images of much higher quality

because of the hierarchical architecture in both generator and discriminator. However, they

are both trained only on the damaged insulators, and therefore does not make any use

of information from the good insulators. Motivated by the advantages and drawbacks of

existing GANs models, BPGANs is proposed. BPGANs is able to make full use of label

information to generate images with good quality.

StyleGANs, PGANs, and BPGANs are able to produce damaged insulators examples

with high quality. PGANs produced the best quality images with recognition rate about

87%, followed by StyleGANs (81%) and BPGANs (80%). The rest of GANs models failed

to produce good quality images, having low recognition rate less than 70%. Low SSIM

values by all the GANs models indicated that generated images are of great mode and

are not similar to training data set. The classification accuracy and F1-score trained on

the unaugmented data set is 91.45% and 0.9424. After augmenting the original data set,

the classifier achieved higher F1-scores and classification accuracy. Highest improvement

was seen on results from PGANs, with classification accuracy increased by about 3% and

F1-score by 2%. StyleGANs and BPGANs also improved classification performance. The

former achieved accuracy of 93.78% and F1-score of 0.9585, and the latter had accuracy of

92.49%, F1-score of 0.9516. BGANs and AC-GANs degraded the classification performance

compared to the baseline as images generated by the two were of low quality.

The reason why BPGANs had difficulties distinguishing good versus damaged insulators

might be because the classification loss is too little in magnitude compared to the source

loss, which tried to tell if the images shown to the discriminator are from real or fake

images. As a result, the optimizer focused more on optimizing the parameters to reduce

the source loss. Another reason might be because there are only two class labels, which

only provide 2 additional latent codes compared to original 512 latent codes, having limited

effect on the model. Results indicated that learning representations of data progressively

from low resolution to high resolution is an effective approach, however, embedding class

label information in the fashion of AC-GANs and BGANs might not be appropriate for
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augmenting binary class data sets.

6.2 Future Work

Embedding class label in forms of latent codes might not be suitable for augmenting data

set with binary class label. Furthermore, in the training of GANs, latent vector is sampled

from some distribution (for example, normal distribution) and then is used to produce fake

images to fool the discriminator. Another way to include class labels is via the latent vector,

on which future work is indicated, as this affects the convergence rate of the training as well

as the image quality.
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