4 research outputs found

    Membrane Systems with External Control

    Get PDF
    We consider the idea of controlling the evolution of a membrane system. In particular, we investigate a model of membrane systems using promoted rules, where a string of promoters (called the control string) “travels” through the regions, activating the rules of the system. This control string is present in the skin region at the beginning of the computation – one can interpret that it has been inserted in the system before starting the computation – and it is “consumed”, symbol by symbol, while traveling through the system. In this way, the inserted string drives the computation of the membrane system by controlling the activation of evolution rules. When the control string is entirely consumed and no rule can be applied anymore, then the system halts – this corresponds to a successful computation. The number of objects present in the output region is the result of such a computation. In this way, using a set of control strings (a control program), one generates a set of numbers. We also consider a more restrictive definition of a successful computation, and then study the corresponding model. In this paper we investigate the influence of the structure of control programs on the generative power. We demonstrate that different structures yield generative powers ranging from finite to recursively enumerable number sets. In determining the way that the control string moves through the regions, we consider two possible “strategies of traveling”, and prove that they are similar as far as the generative power is concerned

    Models of natural computation : gene assembly and membrane systems

    Get PDF
    This thesis is concerned with two research areas in natural computing: the computational nature of gene assembly and membrane computing. Gene assembly is a process occurring in unicellular organisms called ciliates. During this process genes are transformed through cut-and-paste operations. We study this process from a theoretical point of view. More specifically, we relate the theory of gene assembly to sorting by reversal, which is another well-known theory of DNA transformation. In this way we obtain a novel graph-theoretical representation that provides new insights into the nature of gene assembly. Membrane computing is a computational model inspired by the functioning of membranes in cells. Membrane systems compute in a parallel fashion by moving objects, through membranes, between compartments. We study the computational power of various classes of membrane systems, and also relate them to other well-known models of computation.Netherlands Organisation for Scientific Research (NWO), Institute for Programming research and Algorithmics (IPA)UBL - phd migration 201

    Membrane systems with external control

    No full text
    We consider the idea of controlling the evolution of a membrane system. In particular, we investigate a model of membrane systems using promoted rules, where a string of promoters (called the control string) "travels" through the regions, activating the rules of the system. This control string is present in the skin region at the beginning of the computation - one can interpret that it has been inserted in the system before starting the computation - and it is "consumed", symbol by symbol, while traveling through the system. In this way, the inserted string drives the computation of the membrane system by controlling the activation of evolution rules. When the control string is entirely consumed and no rule can be applied anymore, then the system halts - this corresponds to a successful computation. The number of objects present in the output region is the result of such a computation. In this way, using a set of control strings (a control program), one generates a set of numbers. We also consider a more restrictive definition of a successful computation, and then study the corresponding model. In this paper we investigate the influence of the structure of control programs on the generative power. We demonstrate that different structures yield generative powers ranging from finite to recursively enumerable number sets. In determining the way that the control string moves through the regions, we consider two possible "strategies of traveling", and prove that they are similar as far as the generative power is concerned. © Springer-Verlag Berlin Heidelberg 2006

    Membrane Systems with External Control

    No full text
    Abstract. We consider the idea of controlling the evolution of a membrane system. In particular, we investigate a model of membrane systems using promoted rules, where a string of promoters (called the control string) “travels ” through the regions, activating the rules of the system. This control string is present in the skin region at the beginning of the computation – one can interpret that it has been inserted in the system before starting the computation – and it is “consumed”, symbol by symbol, while traveling through the system. In this way, the inserted string drives the computation of the membrane system by controlling the activation of evolution rules. When the control string is entirely consumed and no rule can be applied anymore, then the system halts – this corresponds to a successful computation. The number of objects present in the output region is the result of such a computation. In this way, using a set of control strings (a control program), one generates a set of numbers. We also consider a more restrictive definition of a successful computation, and then study the corresponding model. In this paper we investigate the influence of the structure of control programs on the generative power. We demonstrate that different structures yield generative powers ranging from finite to recursively enumerable number sets. In determining the way that the control string moves through the regions, we consider two possible “strategies of traveling”, and prove that they are similar as far as the generative power is concerned.
    corecore