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Abstract. We consider the idea of controlling the evolution of a mem-
brane system. In particular, we investigate a model of membrane systems
using promoted rules, where a string of promoters (called the control
string) “travels” through the regions, activating the rules of the system.
This control string is present in the skin region at the beginning of the
computation – one can interpret that it has been inserted in the system
before starting the computation – and it is “consumed”, symbol by sym-
bol, while traveling through the system. In this way, the inserted string
drives the computation of the membrane system by controlling the acti-
vation of evolution rules. When the control string is entirely consumed
and no rule can be applied anymore, then the system halts – this cor-
responds to a successful computation. The number of objects present in
the output region is the result of such a computation. In this way, us-
ing a set of control strings (a control program), one generates a set of
numbers. We also consider a more restrictive definition of a successful
computation, and then study the corresponding model.

In this paper we investigate the influence of the structure of con-
trol programs on the generative power. We demonstrate that different
structures yield generative powers ranging from finite to recursively enu-
merable number sets.

In determining the way that the control string moves through the
regions, we consider two possible “strategies of traveling”, and prove
that they are similar as far as the generative power is concerned.

1 Introduction

Membrane systems (also referred to as P systems) were introduced in 1998 by 
Gh. Păun as computing devices inspired by the structure and functioning of
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living cells. Since their introduction, several models of P systems have been
investigated, many of them being proved to be computationally complete. The
reader is referred to the monograph [6], and to an up-to-date bibliography of
this research area available at the P systems web-page, [11].

In nature, the behavior of cells can be influenced by the signals (controls) that
they receive from the “outside”. Thus, it may be possible to drive the evolution
of a living cell by providing the cell with a specific control.

With this motivation in mind, we introduce and investigate a model of P sys-
tems, called string-controlled P systems (in short, SC P systems). This model is
based (with some modifications) on membrane systems with promoters, intro-
duced in [1]. There, the presence of promoters is used to activate, during the
computation, certain rules of the system. The biological motivation is the fact
that chemical reactions in living cells can be promoted (or inhibited) by the
presence of various enzymes.

A string of promoters (called the control string), “produced” by the environ-
ment, is present in the skin region of the system at the beginning of a computa-
tion. This string (that acts like an external control) travels through the regions
of the system, possibly promoting (with its leftmost symbol) the rules of the
region where it currently resides. Each time the string moves from one region
to another, its leftmost symbol (used as a promoter) gets consumed. When the
whole string is consumed, and no rule can be applied in any region, then the
system halts, completing a successful computation. The output of such compu-
tation is the number of objects present in the output region when the system
halts.

We shall also consider another sort of successful computation, which addition-
ally has to satisfy a “clean ending condition” (which requires that an a priori
specified “undesirable” object is not present in any region upon the completion
of the computation).

In this way, an SC P system generates the set of numbers composed by the
outputs of all its computations. Also, a membrane system with a collection of
control strings (called the control program) generates a set of numbers, which is
defined as the union of the sets generated for each single string.

In this paper we pay special attention to SC P systems where all evolution
rules of the system are promoted – hence, only the rules defined in the region
where the control string currently resides, and whose promoter matches the
leftmost symbol of the control string, may be active. In particular, we investigate
how the structure of the control program influences the generative power of such
systems, which are called fully-promoted SC P systems.

We show that if the control program is finite, then the generative power
corresponds exactly to the family of finite sets of numbers. On the other hand,
if the family of recursively enumerable languages is used as the control program,
then, not surprisingly, the resulting generative power corresponds to the family
of Turing computable sets of numbers. Several intermediate results are obtained
by balancing the structure of the control program and the power of the evolution
rules used by the system.



We consider two different ways (operating modes) for a control string to travel
through the regions of the system: either the string must move at each step (mode
(1)), or it is allowed to remain in the same region for several consecutive steps
until it decides (nondeterministically) to move again (mode (2)). We prove that,
under some natural conditions on the control program, these two modes are
similar as far as the generative power is concerned.

The paper is organized as follows. Section 2 recalls some basic notions of
formal languages theory used throughout the paper. A formal definition of SC
P systems is presented in Section 3. In Section 4 we show that the generative
power of classes of fully-promoted SC P systems with a natural condition on
the control program family are “almost” independent on the chosen operating
mode of the movement of the control string. In Section 5 we consider structures
of control that yield a generative power strictly weaker than RE, and in Section
6 structures that yield the computational completeness.

We conclude the paper by suggesting a number of open problems and research
directions.

2 Preliminaries

Let us briefly recall some notions and results of formal languages to the extent
needed in this paper – in this way we establish the basic notation and terminology
needed later on. For more details the reader can consult standard books, such
as [10], [2], and the handbook [9].

An alphabet V is a finite set of symbols. By V ∗ we denote the set of all strings
over V , the empty string is denoted by λ, and V + = V ∗ − {λ}.

The length of a string w ∈ V ∗ is denoted by |w|, while the number of oc-
currences of a ∈ V in w is denoted by |w|a. For a language L ⊆ V ∗, the set
length(L) = {|w| | w ∈ L} is called the length set of L.

If FL is a family of languages then NFL is the family of length sets of
languages in FL.

We denote by FIN , REG, CF , CS and RE the families of finite, regu-
lar, context-free, context-sensitive and recursively enumerable languages, respec-
tively. Accordingly, for instance, the family of length sets of languages in RE is
denoted by NRE (this is the family of all recursively enumerable sets of natural
numbers).

A multiset over V is a mapping M : V −→ IN0; assigning to each a ∈ V a
multiplicity M(a). Commonly, multisets are represented by strings of symbols.
In this representation the order of symbols does not matter, because the number
of copies of an object in a multiset is given by the number of occurrences of
the corresponding symbol in the string. Hence, e.g., a4b3d denotes the multiset
consisting of 4 occurrences of a, 3 occurrences of b, and one occurrence of d; the
same multiset is also represented by, e.g., da2ba2b2.

An ET0L system is a construct G = (Σ, T, H, w), where Σ is the (total)
alphabet, T ⊆ Σ is the terminal alphabet, H = {h1, h2, . . . , hk} is a finite set
of finite substitutions (tables) over Σ, and w ∈ Σ∗ is the axiom; each hi ∈ H ,



1 ≤ i ≤ k, can be represented by a list of context-free productions A → x, such
that A ∈ Σ and x ∈ Σ∗ (moreover, for each symbol A of Σ and each table hi,
1 ≤ i ≤ k, there is a production in hi with A as the left hand side). Then G
defines, for each 1 ≤ i ≤ k, a derivation relation ⇒hi by x ⇒hi y iff y ∈ hi(x).
We write x ⇒ y if x ⇒hi y for some 1 ≤ i ≤ k. As usual, x =⇒∗ y denotes the
reflexive and transitive closure.

The language generated by G is L(G) = {z ∈ T ∗ | w =⇒∗ z}. We denote
by ET 0L the family of languages generated by ET0L systems, and by T 0L the
family of languages generated by ET0L systems such that Σ = T .

A regularly (context-free, respectively) controlled ET0L system, in short E(rc)
T0L system (E(cfc)T0L system, respectively), is a pair Ω = (G, L) where G =
(Σ, T, H, w) is an ET0L system and L is a regular (context-free, respectively)
language over H .

The language generated by Ω is

L(Ω) = {z ∈ T ∗ | w = w0 ⇒hi1
w1 ⇒hi2

. . . ⇒him
wm = z, hi1 · · ·him ∈ L}.

We denote by E(rc)T 0L the family of languages generated by E(rc)T0L sys-
tems, and by E(cfc)T 0L the family of languages generated by E(cfc)T0L sys-
tems.

The following known inclusions between families of languages will be used in
this paper (see, e.g., [10]):

FIN ⊂ CF ⊂ ET 0L ⊂ CS ⊂ RE.

From [4] we recall the following result.

ET 0L = E(rc)T 0L.

Moreover, it is known that for each L ∈ ET 0L there exists an ET0L system
G, with only 2 tables, such that L = L(G) (see, e.g., [8]).

A regularly controlled grammar with appearance checking is a tuple G =
(N, T, S, P, K, F ) where N, T, S, and P are the set of nonterminals, the set of
terminals, the starting symbol and a finite set of context-free productions, re-
spectively. Each production in P has a uniquely associated label, and the set
of all these labels is denoted by lab(P ). K is a regular language over lab(P )
and F ⊆ lab(P ). Let V = N ∪ T . We say that x ∈ V + derives y ∈ V ∗ in the
appearance checking mode by application of A → w with label p (written as
x ⇒ac

p y) if either x = x1Ax2 and y = x1wx2, or A does not appear in x, p ∈ F ,
and x = y.

The language L(G), generated by G, consists of all strings w ∈ T ∗ such that
there is a derivation S ⇒ac

pi1
w1 ⇒ac

pi2
w2 ⇒ac

pi3
. . . ⇒ac

pin
wn = w, for some n ≥ 1

and pi1pi2 · · · pin ∈ K.
By rCac we denote the family of languages generated by regularly controlled

grammars with appearance checking and erasing productions, and by rC we
denote the family of languages generated by regularly controlled grammars with
erasing productions and without appearance checking (the set F is empty).



The following lemma holds (see [2]):

Lemma 1. rCac = RE.

In what follows we assume that the reader is familiar with the membrane com-
puting area, in particular with the class of P systems with rewriting rules and
symbol-objects, and with the notions of P systems using promoters/inhibitors;
for instance as presented in [1,5,7] or in Chapter 3 of [6].

3 String-Controlled P Systems

A string-controlled P system, as informally described in Introduction, is defined
as follows.

Definition 1. A string-controlled P system (in short, SC P system) is a con-
struct

Π = (V, C, P, L, μ, w1, . . . , wm, R1, . . . , Rm, i0),

where:

– V is the alphabet of Π; its elements are called objects;
– C ⊆ V is the set of catalysts;
– P is the set of promoters; P ∩ V = ∅;
– L ⊆ P ∗ is the control program (each string in L is a control string);
– μ is a membrane structure consisting of m membranes labeled 1, . . . , m;
– wi, 1 ≤ i ≤ m, are strings that represent the multisets over V initially

associated with the regions 1, 2, . . . , m of μ;
– Ri, 1 ≤ i ≤ m, are finite sets of evolution rules associated with the regions

1, 2, . . . , m of μ. Each evolution rule is either of the form u → v or of the
form u → v|p, where u ∈ V +, p ∈ P , and v ∈ V ∗

tar with Vtar = V × TAR,
for TAR = {here, out} ∪ {inj | 1 ≤ j ≤ m};

– i0 ∈ {1, . . . , m} specifies the output region of Π.

As usual, the membrane structure is a hierarchical arrangement of membranes,
embedded in a skin membrane, which separates the system from the environment.
A membrane without any membrane inside is called elementary. Each membrane
defines a region. For an elementary membrane this is the space enclosed by it,
while for a non-elementary membrane, is the space in-between the membrane
and the membranes directly included in it. As usual, labels 1, . . . , m identify
both membranes and their corresponding regions.

Evolution rules of the form u → v|p are called promoted, and evolution rules
of the form u → v are called non-promoted. An evolution rule is called non-
cooperative if u ∈ V . Also, an evolution rule is called catalytic if it is either of
the form ca → cv or of the form ca → cv|p, where a ∈ (V −C), c ∈ C, p ∈ P , and
v ∈

(
(V −C)×TAR

)∗. The elements of TAR are called targets. It is convenient
to denote (a, t) ∈ Vtar by a if t = here, and by at otherwise.

A configuration of Π is a description of the membrane structure and of the
contents of all the regions. An initial configuration of Π consists of the membrane



structure μ, the objects initially present in the regions of the system, as described
by w1, . . . , wm, and by one string from L, present in the skin region (this string
is called control string). Notice that Π has a set of initial configurations, one for
each element of L.

As standard, we suppose the existence of a global clock that marks the steps
of the system.

At each step, the control string moves, in a nondeterministic way, across the
regions of Π . We distinguish two possible modes of operation for Π : (1) at each
step the string moves passing from one region to an adjacent one; (2) at each
step the string may move to an adjacent region or remain in the same region.
In both cases the control string cannot move to the environment, and when it
moves from a region to another one, it loses its leftmost symbol. The leftmost
symbol of the control string is called the head.

At each step the head of the current control string is used as a promoter for
the rules present in the region where the string resides. A promoted rule is active
if its promoter is present. The rules that are not promoted are always active.

A transition between two configurations of Π is obtained by applying in one
step the active rules in each region of Π in a maximally parallel nondeterministic
manner. More precisely, if a rule u → v ∈ Ri or u → v|p ∈ Ri is active and the
multiset u is present in region i, then the application of this rule means removing
u from region i and adding the objects specified by v in the regions indicated by
the corresponding target commands.

A sequence of transitions, starting from an initial configuration of Π , is called
computation. A computation halts when there is no applicable rule in any re-
gion of Π and the control string is entirely consumed (Π has reached a halting
configuration).

We shall consider two definitions of successful computation for Π :

– in the standard case, we say that all halting computations of Π are successful,
– in the # case, we consider that a halting computation of Π is successful if

and only if a special a priori designated symbol # ∈ V is not present in the
halting configuration in any region of Π .

The result of a successful computation ω is the number of objects present
in the output region i0 in the halting configuration of ω. Depending on the
definition of successful computation that is considered, we shall say that the
system collects the result in the standard way, or in the # way.

We use the notation Pm(α, FL), where α ∈ {ncoo, coo} ∪ {catk | k ≥ 1} and
FL is a family of languages, to denote the class of SC P systems which use
at most m membranes, use only non-cooperative (ncoo), cooperative (coo), or
catalytic with at most k catalysts (catk) evolution rules (promoted or not), and
use a control program in FL. We call FL the control program family of the class.
In the coo case, there is no restriction on the form of the evolution rules. The
prefix (pro) is added if only promoted rules are used (such systems are called
fully-promoted SC P systems).

We denote by N (i)(Π), i ∈ {1, 2}, the set of results of all successful computa-
tions of Π starting from any possible initial configuration, operating in mode (i),



and collecting the result in the standard way. Similarly, we denote by N
(i)
# (Π), i ∈

{1, 2}, the set of results of all successful computations of Π operating in mode (i)
and collecting the result in the # way. Moreover, N (i)Pm(α, FL) = {N (i)(Π) |
Π ∈ Pm(α, FL), i ∈ {1, 2}} denotes the family of sets of natural numbers gen-
erated by SC P systems from Pm(α, FL) operating in mode (i), i = 1, 2, and
collecting the result in the standard way. The family N

(i)
# Pm(α, FL) is similarly

defined.
The following inclusions follow directly from the definitions.

Lemma 2

(pro)N (i)Pm(α, FL) ⊆ (pro)N (i)
# Pm(α, FL),

(pro)N (i)
# Pm(α, FL1) ⊆ (pro)N (i)

# Pm(α, FL2), if FL1 ⊆ FL2,

(pro)N (i)
# Pm(ncoo, FL) ⊆ (pro)N (i)

# Pm(catj , FL)

⊆ (pro)N (i)
# Pm(catj+1, FL) ⊆ (pro)N (i)

# Pm(coo, FL),

for j ≥ 1, i ∈ {1, 2}, α ∈ {ncoo, coo} ∪ {catk | k ≥ 1}, and FL, FL1, FL2
families of languages.

4 Fully-Promoted SC P Systems

In this section we start the investigation of fully-promoted SC P systems. Notice
that for such systems in each time step there is activity in at most one region (the
region where the control string currently resides). First we give an example that
illustrates the functioning of an SC P system. Then we prove the equivalence
(as far as the generative power is concerned) between modes (1) and (2).

The following example shows that a given SC P system Π can produce dif-
ferent results according to its functioning mode.

Example 1. Let Π be the SC P system:

Π = (V, C, P, L, μ, w1, w2, R1, R2, i0),

where:

– V = {A},
– C = ∅,
– P = {a, b},
– L = {ab},
– μ = [1 [2 ]2 ]1,
– w1 = λ; w2 = A,
– R1 = ∅,
– R2 = {A → AA|b},
– i0 = 2.

The system collects the result in the standard way.



When Π operates in mode (1), the unique control string of L is initially
present in the skin region and moves, in the next step, to region 2, losing its
head a. Therefore, now the rule A → AA|b is activated. In the following step
the control string exits region 2, entering region 1, and then its last symbol, b,
is consumed. Therefore, there is only one successful computation and we have
N (1)(Π) = {2}.

If Π operates in mode (2), then the unique control string of L is initially
present in the skin region and it may remain there for a certain number of steps;
meanwhile nothing is produced in region 2. At a certain step the string moves
into region 2, losing its head a. Then, the rule A → AA|b is activated in region 2
and it will double the number of objects A at each step, until the string b moves
back to region 1. When this happens the computation halts and the number of
objects produced in region 2 is a power of two, that is, N (2)(Π) = {2n | n ≥ 1}.

Example 1 illustrates that for a given fully-promoted SC P system the generated
sets under operating modes (1) and (2) may differ (even drastically). However,
the family of sets of numbers generated by a class of fully-promoted SC P sys-
tems with a control program family that is closed under non-erasing regular
substitution is “almost” independent on the chosen operating mode. In fact, we
show that any fully-promoted SC P system operating in mode (2) [(1), respec-
tively] can be simulated (in a weak sense) by a fully-promoted SC P system
operating in mode (1) [(2), respectively] using the same type of rules, the same
type of control program, and using a double number of membranes.

Theorem 1. Let Π ∈ (pro)Pm(α, FL), where m ≥ 1, α ∈ {ncoo, coo} ∪ {catk |
k ≥ 1}, and FL is closed under non-erasing regular substitution. There exists
Π ′ ∈ (pro)P2m(α, FL), such that

N
(1)
# (Π ′) = {x + 1 | x ∈ N

(2)
# (Π)}.

Proof. Let Π = (V, C, P, L, μ, w1, . . . , wm, R1, . . . , Rm, i0) ∈ (pro)Pm(α, FL),
and let us construct Π ′ = (V ′, C, P ′, L′, μ′, w′

1, . . . , w′
2m, R′

1, . . . , R′
2m, i0) ∈

(pro)P2m(α, FL) as follows.
Let V ′ = V ∪ {Z}, with Z /∈ V and P ′ = P ∪ {d}, with d /∈ P . We consider

the regular substitution φ defined by φ(p) = p(dp)∗ for each p ∈ P ; we define
L′ = φ(L) (notice that the substitution is non-erasing and so every family of
languages in {REG, CF, CS, RE} is closed under this operation). The structure
μ′ has 2m membranes and is obtained from μ by adding, in each region i, 1 ≤
i ≤ m, of μ an (elementary) membrane with label m + i. Furthermore we define
w′

i = wiZ, for 1 ≤ i ≤ m, and w′
i = Z, for m + 1 ≤ i ≤ 2m.

We define R′
i = Ri ∪{Z → #|d}, for 1 ≤ i ≤ m, and R′

i = {Z → #|p | p ∈ P},
for m + 1 ≤ i ≤ 2m.

We shall now show that for every successful computation C of Π with result x
operating in mode (2) there exists a successful computation C′ of Π ′ with result
x + 1 operating in mode (1).

Consider an arbitrary computation of Π and consider one of its configurations.
Now, suppose that in such configuration the current control string w is in region i



of Π and has p as its head. Then, there exists a computation in Π ′, starting with
an “appropriate” control string from L′ in the skin, that reaches a configuration
having the control string w′ = p(dp)nx present in region i of Π ′.

Suppose now that w does not move in Π (Π operates in mode (2)) but
remains in the same region for several consecutive steps. This is simulated in Π ′

by moving w′ back and forth between region i and the adjacent dummy region
m+i, consuming for each movement a symbol p and a dummy promoter d. In this
way, an arbitrary computation in Π can be simulated in Π ′ by a computation
starting with an appropriate control string from L′.

On the other hand, Π ′ does not have other successful computations except
those simulating successful computations of Π as described above. In fact, since
there is a rule Z → #|d in every set R′

i, for 1 ≤ i ≤ m, which guarantees that the
dummy symbol d cannot be used to move the control string into non-dummy
regions, otherwise the computation would not be successful. Moreover, if the
promoter present immediately to the right of the head of the current control
string is non-dummy (i.e., the string is of type pqx, with p, q ∈ P , and x ∈ P ∗),
then the string must move in a non-dummy region, because otherwise the rules
R′

i = {Z → #|p | p ∈ P}, for m + 1 ≤ i ≤ 2m, would make the computation
unsuccessful, if applied. From the above discussion it should be clear that the
theorem holds. �

Conversely, a fully-promoted SC P system operating in mode (1) can be simu-
lated (in a weak sense) by a fully-promoted SC P system operating in mode (2),
using a structure having a double number of membranes.

Theorem 2. Let Π ∈ (pro)Pm(α, FL), where m ≥ 1, α ∈ {ncoo, coo} ∪ {catk |
k ≥ 1}, and FL is closed under non-erasing morphism. There exists Π ′ ∈
(pro)P2m(α, FL), such that

N
(2)
# (Π ′) = {x + 2 | x ∈ N

(1)
# (Π)}.

Proof. Given Π = (V, C, P, L, μ, w1, . . . , wm, R1, . . . , Rm, i0) we construct Π ′ =
(V ′, C, P ′, L′, μ′, w′

1, . . . , w
′
2m, R′

1, . . . , R
′
2m, i0) as follows.

Let V ′ = V ∪ {c, c′, Z} and P ′ = P ∪ {d, d′}, with c, c′, Z /∈ V , and d, d′ /∈ P .
We consider the non-erasing morphism φ defined by φ(p) = pdd′, for each
p ∈ P – then we set L′ = φ(L) (notice that every family of languages in
{FIN, REG, CF, CS, RE} is closed under non-erasing morphisms). The mem-
brane structure μ′ has 2m membranes and is obtained from μ in the following
way. In each region i, 1 ≤ i ≤ m, of μ an (elementary) membrane with label
m + i is added.

The initial multisets of Π ′ are w′
i = cZwi, for 1 ≤ i ≤ m, and w′

i = Z, for
m + 1 ≤ i ≤ 2m.

Finally, the evolution rules of Π ′ are defined in the following way: R′
i =

Ri ∪ {c′ → c|d′ , Z → #|d} ∪ {c′ → #|p, c → c′|p | p ∈ P}, for 1 ≤ i ≤ m.
R′

i = {Z → #|p | p ∈ P}, for m + 1 ≤ i ≤ 2m.
We will prove now that for every computation of Π operating in mode (1) and

producing x, there exists a computation of Π ′ operating in mode (2) producing
x + 2.



Consider an arbitrary computation of Π and suppose that, after a certain step
k during that computation, the control string pi1pi2 · · · pij , with pi1 , pi2 , . . . , pij ∈
P , is present in region i of Π .

Then, there is a computation of Π ′ (starting with an “appropriate” control
string from L′) such that the control string pi1dd′pi2dd′ · · · pij dd′ is present in
region i of Π ′ after a given step k′.

In Π , at step k + 1, the string must exit region i (Π operates in mode (1)),
entering one of the adjacent regions, chosen nondeterministically, losing the pro-
moter pi1 and getting the promoter pi2 as its new head.

This single step of Π is simulated by Π ′ in the following consecutive steps.
The rules activated by promoter pi1 present in region i of Π ′ are executed at
step k′, together with the rule c → c′ present in every region of Π ′ and activated
by any promoter of P . Therefore, at step k′ + 1 the control string must exit
region i, as otherwise in the next step the rule c′ → #|pi1

would be applied and
the entire computation would not be successful.

The only region of Π ′ where the control string can go to is the dummy region
m + i present inside region i (otherwise the promoter d that follows pi1 would
activate the rule Z → #|d present in any of the non-dummy adjacent regions
of region i and the computation would not be successful). Therefore, suppose
the control string goes to region m + i, losing in this way the promoter pi1 ; the
control string may remain in region m+ i for an unbounded number of steps (no
rule can be applied there). At a certain step k′′ the control string comes back
to region i, losing the promoter d and having now the promoter d′ as its head;
therefore, in the step k′′ + 1 the rule c′ → c|d′ is applied. The control string
having now d′ as head may remain in region i for an unbounded number of steps
(no rule can be applied). Eventually, the control string exits region i moving to
an adjacent region, losing the promoter d′, and having the promoter pi2 (the
next non-dummy promoter) as its new head.

Thus, all possible movements of the control string in Π (i.e., all possible
computations) are correctly captured by the functioning of Π ′; consequently,
every successful computation of Π can be simulated by Π ′.

Notice that, in Π ′, if the promoter adjacent to the head of the control string
is non-dummy (i.e., it belongs to the set P ), then the control string must move
in a non-dummy region; otherwise a rule from R′

i = {Z → #|p | p ∈ P},
m + 1 ≤ i ≤ 2m, is applied and that would make the computation unsuccessful.

Therefore there are no other successful computations of Π ′ except those that
simulate, in the above described way, successful computations of Π . Thus, the
theorem holds. �


5 The Influence of the Control Program

Now we analyze in more detail the class of fully-promoted SC P systems op-
erating in mode (1). We show how the structure of the control program and
the type of evolution rules influence the generative power of the constructed



membrane system. A series of results, ranging from finite power to computational
universality, is obtained.

It is worth to remark that one can easily obtain the length set of any language
L as output of an SC P system using non-cooperative rules and having L as the
control program. Hence, the structure of the control program influences the
generative power of SC P systems as the following theorem states.

Theorem 3. NFL ⊆ (pro)N (1)P2(ncoo, FL).

Proof. Given an arbitrary language L over the alphabet Σ = {a1, . . . , an}, let
us consider a symbol ∗ /∈ Σ, and let L′ = h(L) where h is the morphism defined
by h(a) = ∗a, for every a ∈ Σ.

Now let us construct an SC P system that generates length(L) as follows:

Π = (V, C, P, L′, μ, w1, w2, R1, R2, i0),

where:

– V = {a′
1, . . . , a

′
n},

– C = ∅,
– P = Σ,
– μ = [1 [2 ]2 ]1,
– w1 = λ; w2 = a′,
– R1 = ∅,
– R2 = {a′ → a′

outa
′|a | a ∈ Σ},

– i0 = 1.

At the beginning of the computation one of the strings from L′, nondeter-
ministically chosen, is present in the skin region of Π (i.e., region 1). The string
moves back and forth between region 1 and region 2 of the system, losing alter-
natively the symbol ∗ (when passing from region 1 to region 2) and a symbol
a ∈ Σ (when moving in the opposite direction). When the string is in region 2,
its head a ∈ Σ activates exactly the rule that produces and sends out the symbol
a′. Therefore, the number of symbols contained in the output region when the
computation halts (the string is entirely consumed) is equal to the number of
symbols from Σ that occurred in the inserted control string. Thus Π generates
exactly the length(L). �


Now, from Corollary 2, Theorem 3 and the Turing-Church thesis, we have that
the class of fully-promoted SC P systems using arbitrary RE languages as control
program is universal, even when only non-cooperative rules are used. Hence, the
following theorem holds.

Theorem 4. (pro)N (1)P2(ncoo, RE) = (pro)N (1)
# P2(ncoo, RE) = NRE.

It is now natural to ask what happens if we increase the “power” of the evolution
rules used by the P system and we decrease the “power” of the control program.

First we consider SC P systems that use cooperative evolution rules and finite
control programs.



Theorem 5. (pro)N (1)
# P∗(coo, FIN) = (pro)N (1)P∗(coo, FIN) = NFIN .

Proof. Given an SC P system Π , it is sufficient to notice that the number of
distinct nondeterministic computations using only a finite number of steps is
bounded by a constant that only depends on Π . Therefore, if Π has a finite
control program, then the set of numbers produced is finite. The other inclusion
follows from Theorem 3. �


Let us prove next that the class of fully-promoted SC P systems using arbitrary
context-free (regular, respectively) languages as control program generates ex-
actly the family NE(cfc)T 0L (or the family NE(rc)T 0L, respectively), even
with non-cooperative rules.

Theorem 6

(pro)N (1)
# P2(ncoo, REG) ⊇ NE(rc)T 0L = NET 0L.

(pro)N (1)
# P2(ncoo, CF ) ⊇ NE(cfc)T 0L.

Proof. Given Ω = (G, L) an arbitrary E(rc)T0L system (or E(cfc)T0L sys-
tem, respectively) we construct a SC P system Π in (pro)P2(ncoo, REG) (in
(pro)P2(ncoo, CF ), respectively) such that N

(1)
# (Π) = length(L(Ω)) as follows.

Let G = (Σ, T, H, w) with H = {h1, . . . , hk}. Let

Π = (V, C, P, L, μ, w1, w2, R1, R2, i0),

where:

– V = Σ,
– C = ∅,
– P = {t1, . . . , tk, d, p}, with d, p /∈ {t1, . . . , tk},
– L′ = φ(L)dp with the morphism φ defined by φ(ti) = dti, 1 ≤ i ≤ k,
– μ = [1 [2 ]2 ]1,
– w1 = λ; w2 = w,
– R1 = ∅,
– R2 = {X → α|ti | X → α ∈ hi, 1 ≤ i ≤ k} ∪ {N → #|p | N ∈ Σ − T },
– i0 = 2.

Now Π simulates in region 2 the productions of G, applying the tables according
to the strings in L′, in such a way that each table hi has an associated promoter
ti, for every 1 ≤ i ≤ k.

The dummy promoter d is only used to be consumed while the control string
moves from region 1 to region 2. In this way, the new head of the control string
is a symbol ti, for some 1 ≤ i ≤ k. The final promoter p added as last symbol of
any string in L′ is used to check whether or not there are still nonterminals in
region 2 in the last step of the computation. If this is the case, then the special
object # is produced and the computation is not successful. Consequently, the
theorem follows. �


We continue now to prove that the reverse inclusions also hold.



Theorem 7

(pro)N (1)
# P∗(ncoo, REG) ⊆ NE(rc)T 0L = NET 0L.

(pro)N (1)
# P∗(ncoo, CF ) ⊆ NE(cfc)T 0L.

Proof. Consider a fully-promoted SC P system Π of the form

Π = (V, C, P, L, μ, w1, . . . , wm, R1, . . . , Rm, i0),

such that C = ∅ and L is a regular (context-free, respectively) language over
P = {p1, p2, . . . , pk}.

We consider the morphisms ϕi, 1 ≤ i ≤ m, defined by ϕi(X) = (X, i), for all
X ∈ V , 1 ≤ i ≤ m. By using these morphisms, we associate with each occurrence
of any object X the index of the region where the occurrence resides.

We also use the morphisms ϕt
i, 1 ≤ i ≤ m, defined by

ϕt
i(Xtar) =

⎧
⎨

⎩

(X, i) if tar = here,
(X, j) if tar = out,
(X, k) if tar = ink,

for all X ∈ V , where j is the label of the surrounding region of i.
We construct now an E(rc)T0L system (or an E(cfc)T0L system, respectively)

Ω = (G, L′) simulating the computations of Π .
First we construct G. Let G = (Σ, T, H, w′), where Σ = {(X, i) | X ∈ V, 1 ≤

i ≤ m}, T = Σ − {(#, i) | 1 ≤ i ≤ m} and w′ = ϕ1(w1) · · · ϕm(wm).
Each table hi,pj ∈ H , 1 ≤ i ≤ m, 1 ≤ j ≤ k, is constructed in the following

way:

– for each X ∈ V , if X → α|pj ∈ Ri, for some pj ∈ P , then the rule (X, i) →
ϕt

i(α) is added to the table hi. Otherwise, if X is not present as the left hand
side of any rule in Ri, then the rule (X, i) → (X, i) is added to the table hi;

– for each X ∈ V and 1 ≤ l ≤ m, l �= i, the rule (X, l) → (X, l) is added to
the table hi.

Notice that H has mk tables and each one of them is complete.
Finally we construct L′. To this aim we define the finite substitution ϕ′ by

ϕ′(pj) = {t(i,pj) | 1 ≤ i ≤ m} for each 1 ≤ j ≤ k. We also define the nondeter-
ministic finite state automaton A = (Q, VA, s0, F, δ), where Q = {0, 1, . . . , m},
VA = {t(i,pj) | 1 ≤ i ≤ m, 1 ≤ j ≤ k}, s0 = 0, F = Q and δ is defined by
δ(0, t(1,pj)) = 1, δ(i1, t(i1,pj)) = {i2 | 1 ≤ i2 ≤ m, and region i1 is adjacent to
region i2 in μ} for every 1 ≤ j ≤ k and 1 ≤ i1 ≤ m. Without loss of generality,
we assume 1 to be the label of the skin membrane of Π .

Now, L′ = ϕ′(L) ∩ L(A) is regular (context-free, respectively) since regular
(context-free, respectively) languages are closed under intersection with regular
languages, see e.g. [10].

The underlying idea of the proof is the following.
Each table t(i,pj) of G with 1 ≤ i ≤ m, 1 ≤ j ≤ k, simulates the rewriting in

parallel of the objects present in region i of Π , by using rules activated by the



promoter pj . All the objects present in the same region that cannot be rewritten
by any active rule, as well as those present in the other regions of the system,
are left unchanged by the application of the table.

The language ϕ′(L) is used to pass from one table to another, in the way
described by the strings of promoters present in the control program L. More
specifically, if the string w = pj1 · · · pjl

is present in L, then ϕ′(L) contains all
the strings of the set Sw = {t(i1,pj1 ), . . . , t(il,pjl

) | i1, . . . , il ∈ {1, . . . , m}}. In this
way, each computation of Π starting with the control string w = pj1 · · · pjl

can
be simulated in G by applying the tables following the order of an appropriate
string in Sw. On the other hand, not every string in the set Sw simulates a
correct computation in Π starting with the control string pj1 · · · pjl

. In fact,
the control string in Π can only move through adjacent regions – this has to be
“encoded” in the way that the passage from one table of G to another one is done.
For this reason the appropriate regular (context-free, respectively) language L′

that controls G is obtained by intersecting the language ϕ′(L) with the regular
language L(A).

From the above explanation it follows that each string in L(Ω) contains pairs
(object, region) corresponding to the objects present in the halting configura-
tions of successful computations of Π . In order to get the exact contents of the
output region of Π , we apply to L(Ω) the morphism ϕo, defined by:

ϕo((X, i)) =
{

X if i = i0,
λ otherwise.

Since the family E(rc)T 0L (or the family E(cfc)T 0L, respectively) is clearly
closed under arbitrary morphisms, it follows that N

(1)
# (Π) belongs to the family

NE(rc)T 0L (or to the family NE(cfc)T 0L, respectively). Thus the theorem
holds. �


From Theorems 6 and 7 we obtain

Corollary 1

(pro)N (1)
# P∗(ncoo, REG) = NE(rc)T 0L = NET 0L.

(pro)N (1)
# P∗(ncoo, CF ) = NE(cfc)T 0L.

On the other hand, if SC P systems collect the result in the standard way,
then one gets the following results.

Theorem 8

(pro)N (1)P2(ncoo, REG) ⊇ N(rc)T 0L = NET 0L.

(pro)N (1)P2(ncoo, CF ) ⊇ N(cfc)T 0L.

Proof. In the proof of Theorem 6 the special symbol # is only used to check if
any nonterminal of G is still present when the computation of Π halts. Therefore
this checking can be avoided during the simulation of a (rc)T0L system (or a
(cfc)T0L system, respectively). Hence the theorem holds. �




Analogously, note that in Theorem 7 the set of nonterminals used by the ET0L
system constructed in the proof contains only the special object # included in
the alphabet of the corresponding SC P system Π . Therefore if Π collects the
output in the standard mode (i.e., it does not use #), then one gets the following
results.

Theorem 9

(pro)N (1)P∗(ncoo, REG) ⊆ N(rc)T 0L = NET 0L.

(pro)N (1)P∗(ncoo, CF ) ⊆ N(cfc)T 0L.

Theorems 8 and 9 yield the following corollary.

Corollary 2

N(rc)T 0L = (pro)N (1)P∗(ncoo, REG) = NET 0L.

N(cfc)T 0L = (pro)N (1)P∗(ncoo, CF ).

6 Fully-Promoted SC P Systems: Universality

If SC P systems use arbitrary regular control programs, and only one catalyst,
then they generate the family of recursively enumerable sets of natural numbers.

In [3], P systems using two catalysts and two membranes have been proved
to be universal. This proof can also be applied for non fully-promoted SC P
systems to obtain the following universality result.

Corollary 3. N
(1)
# P2(cat2, {{λ}}) = NRE.

In case of fully-promoted SC P systems, the computational universality can be
obtained using arbitrary regular control programs and catalytic rules with only
one catalyst.

Theorem 10. (pro)N (1)
# P2(cat1, REG) = NRE.

Proof. The inclusion in NRE follows from Church-Turing thesis. The opposite
inclusion can be proved by simulating regularly controlled grammars with ap-
pearance checking, as follows.

Given a regularly controlled grammar with appearance checking G = (N,

T, S, P, K, F ), we construct Π ∈ (pro)P (1)
2 (cat1, REG), collecting the output in

the # way, that simulates G. Let

Π = (V, C, P ′, L, μ, w1, w2, R1, R2, i0),

where:

– V = N ∪ T ∪ {c, Z},
– C = {c},
– P ′ = lab(P ) ∪ {d, d′}, d, d′ /∈ lab(P ),



– L = φ(K)dd′ with non-erasing morphism φ defined by φ(p) = dp for each
p ∈ lab(P ),

– μ = [1 [2 ]2 ]1,
– w1 = λ; w2 = SZc,
– R1 = ∅,
– R2 = {cA → cα|p | p : A → α ∈ P} ∪ {cZ → c#|p | p /∈ F}

∪ {Z → Zout|d′},
– i0 = 2.

We show that Π simulates the derivations of G. Note that, by definition, for every
pi1 · · · pik

∈ K, we have dpi1 · · · dpik
dd′ ∈ L. The promoters d are dummies, they

are only used to let the control string to enter and exit region 2, passing in
this way from a promoter pij as the current head to the promotor pij+1 , for
1 ≤ j ≤ k − 1. The derivations of G are simulated by the execution of rules
from R2.

Notice that, because of the catalyst c that inhibits the parallelism, at most
one rule is executed in region 2 when the control string resides in that region.
If a rule cannot be applied and the label of the corresponding production is not
in F , then the computation is unsuccessful (# is produced by applying the rule
cZ → c# that is activated by any promoter p ∈ (lab(P )−F )) and this is correct
since the simulated derivation in G cannot be continued. On the other hand, if a
rule cannot be applied and the label of the corresponding production is in F (so
the production has to be used in the appearance checking mode), then no rule
is applied in region 2, the control string leaves the region and the computation
continues. The last promoter d′ present for any control string in L is used to
move, at the end of the computation, the symbol Z into region 1. It should be
clear from the above description that N

(1)
# (Π) is exactly the length set of L(G).

Thus the theorem holds. �


We conclude this section by presenting some preliminary results concerning the
class of non fully-promoted SC P systems.

By definition, it is clear that

Lemma 3

(pro)N (i)
# Pm(α, FL) ⊆ N

(i)
# Pm(α, FL),

(pro)N (i)Pm(α, FL) ⊆ N (i)Pm(α, FL),

for α ∈ {ncoo, coo} ∪ {catk | k ≥ 1}, FL a family of languages, and i ∈ {1, 2}.

It is easy to notice that systems from P1(ncoo, FIN) can generate infinite sets
of numbers when operating in mode (1) and collecting the result in the standard
way. This observation and Theorem 5 yield the following result.

Theorem 11

(pro)N (1)
# P∗(α, FIN) = (pro)N (1)P∗(α, FIN) ⊂ N (1)P∗(α, FIN),

for α ∈ {ncoo, coo} ∪ {catk | k ≥ 1}.



On the other hand, if one can use any RE language as the control program, then
both classes of SC P systems have the same computational power. In particular,
from Theorem 4 and Corollary 3, one gets the following result.

Theorem 12

(pro)N (1)Pm(α, RE) = N (1)Pm(α, RE) = NRE,

for α ∈ {ncoo, coo} ∪ {catk | k ≥ 1}.

7 Concluding Remarks and Open Problems

We have introduced and investigated SC P systems where the computations are
driven by control strings (present in their skin region at the beginning of com-
putations). We have mainly investigated fully-promoted SC P systems, where
all the rules are promoted (hence controlled by the control strings). Most of the
results proved in this paper concern systems operating in mode (1), although
this is just a matter of convenience, because we have proved the equivalence
between both operating modes (under some conditions).

Table 1 gives an overview of the results obtained for fully-promoted SC P
systems operating in mode (1) and collecting the result in the # way.

Table 1. Computational power of fully-promoted SC P systems operating in mode (1)
and collecting the result in the # way. Rows specify the types of evolution rules, and
the columns specify the types of control programs.

RE CF REG FIN
ncoo NRE NE(cfc)T0L NET0L NFIN
cati, i ≥ 1 NRE NRE NRE NFIN
coo NRE NRE NRE NFIN

The results obtained for fully-promoted SC P systems operating in mode (1)
and collecting the result in the standard way are summarized in Table 2.

Table 2. Computational power for fully-promoted SC P systems operating in mode (1)
and collecting the result in the standard way. Again, rows specify the types of evolution
rules, and the columns specify the types of control programs.

RE CF REG FIN
ncoo NRE N(cfc)T0L N(rc)T0L NFIN
cati, i ≥ 1 NRE ⊇ N(cfc)T0L ⊇ N(rc)T0L NFIN
coo NRE ⊇ N(cfc)T0L ⊇ N(rc)T0L NFIN

Several problems, mainly concerning non fully-promoted systems, remain
open. Are non-fully promoted SC P systems more powerful than fully-promoted



SC P systems? The answer is positive for SC P systems operating in mode
(1) and having a finite control program (Theorem 11). We conjecture that the
strict inclusion also holds when the control program is regular and the result is
collected in the standard way.

Another open problem is to find a non-trivial upper bound for the generative
power of fully-promoted SC P systems operating in mode (1), collecting the
result in the standard way, and using cooperative or catalytic rules (see Table 2).
We only know that these classes of systems can generate at least the family of
length sets of languages from (rc)T 0L (if the control program is regular) and
from (cfc)T 0L (if the control program is context-free). We doubt that these two
classes are universal – as a matter of fact they may be incomparable with the
classical Chomsky classes.

Finally, another interesting issue to be investigated is having the control pro-
grams produced by another bio-inspired generative device (as for instance, an-
other membrane system, or a DNA-based system).
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