31 research outputs found

    Machine Learning Models that Remember Too Much

    Full text link
    Machine learning (ML) is becoming a commodity. Numerous ML frameworks and services are available to data holders who are not ML experts but want to train predictive models on their data. It is important that ML models trained on sensitive inputs (e.g., personal images or documents) not leak too much information about the training data. We consider a malicious ML provider who supplies model-training code to the data holder, does not observe the training, but then obtains white- or black-box access to the resulting model. In this setting, we design and implement practical algorithms, some of them very similar to standard ML techniques such as regularization and data augmentation, that "memorize" information about the training dataset in the model yet the model is as accurate and predictive as a conventionally trained model. We then explain how the adversary can extract memorized information from the model. We evaluate our techniques on standard ML tasks for image classification (CIFAR10), face recognition (LFW and FaceScrub), and text analysis (20 Newsgroups and IMDB). In all cases, we show how our algorithms create models that have high predictive power yet allow accurate extraction of subsets of their training data

    How Does Data Augmentation Affect Privacy in Machine Learning?

    Full text link
    It is observed in the literature that data augmentation can significantly mitigate membership inference (MI) attack. However, in this work, we challenge this observation by proposing new MI attacks to utilize the information of augmented data. MI attack is widely used to measure the model's information leakage of the training set. We establish the optimal membership inference when the model is trained with augmented data, which inspires us to formulate the MI attack as a set classification problem, i.e., classifying a set of augmented instances instead of a single data point, and design input permutation invariant features. Empirically, we demonstrate that the proposed approach universally outperforms original methods when the model is trained with data augmentation. Even further, we show that the proposed approach can achieve higher MI attack success rates on models trained with some data augmentation than the existing methods on models trained without data augmentation. Notably, we achieve a 70.1% MI attack success rate on CIFAR10 against a wide residual network while the previous best approach only attains 61.9%. This suggests the privacy risk of models trained with data augmentation could be largely underestimated.Comment: AAAI Conference on Artificial Intelligence (AAAI-21). Source code available at: https://github.com/dayu11/MI_with_D

    Segmentations-Leak: Membership Inference Attacks and Defenses in Semantic Image Segmentation

    No full text
    Today's success of state of the art methods for semantic segmentation is driven by large datasets. Data is considered an important asset that needs to be protected, as the collection and annotation of such datasets comes at significant efforts and associated costs. In addition, visual data might contain private or sensitive information, that makes it equally unsuited for public release. Unfortunately, recent work on membership inference in the broader area of adversarial machine learning and inference attacks on machine learning models has shown that even black box classifiers leak information on the dataset that they were trained on. We show that such membership inference attacks can be successfully carried out on complex, state of the art models for semantic segmentation. In order to mitigate the associated risks, we also study a series of defenses against such membership inference attacks and find effective counter measures against the existing risks with little effect on the utility of the segmentation method. Finally, we extensively evaluate our attacks and defenses on a range of relevant real-world datasets: Cityscapes, BDD100K, and Mapillary Vistas.Comment: Accepted to ECCV 2020. Code at: https://github.com/SSAW14/segmentation_membership_inferenc
    corecore