105 research outputs found

    An Application of the Melnikov Method to a Piecewise Oscillator

    Get PDF
    In this paper we present a new application of the Melnikov method to a class of periodically perturbed Duffing equations where the nonlinearity is non-smooth as otherwise required in the classical applications. Extensions of the Melnikov method to these situations is a topic with growing interests from the researchers in the past decade. Our model, motivated by the study of mechanical vibrations for systems with “stops”, considers a case of a nonlinear equation with piecewise linear components. This allows us to provide a precise analytical representation of the homoclinic orbit for the associated autonomous planar system and thus obtain simply computable conditions for the zeros of the associated Melnikov function

    Bifurcation of Limit Cycles from a Periodic Annulus Formed by a Center and Two Saddles in Piecewise Linear Differential System with Three Zones

    Full text link
    In this paper, we study the number of limit cycles that can bifurcate from a periodic annulus in discontinuous planar piecewise linear Hamiltonian differential system with three zones separated by two parallel straight lines, such that the linear differential systems that define the piecewise one have a center and two saddles. That is, the linear differential system in the region between the two parallel lines (i.e. the central subsystem) has a center and the others subsystems have saddles. We prove that if the central subsystem has a real or a boundary center, then we have at least six limit cycles bifurcating from the periodic annulus by linear perturbations, four passing through the three zones and two passing through the two zones. Now, if the central subsystem has a virtual center, then we have at least four limit cycles bifurcating from the periodic annulus by linear perturbations, three passing through the three zones and one passing through the two zones. For this, we obtain a normal form for these piecewise Hamiltonian systems and study the number of zeros of its Melnikov functions defined in two and three zonesComment: arXiv admin note: text overlap with arXiv:2109.1031

    Cyclicity Near Infinity in Piecewise Linear Vector Fields Having a Nonregular Switching Line

    Get PDF
    Altres ajuts: acords transformatius de la UABIn this paper we recover the best lower bound for the number of limit cycles in the planar piecewise linear class when one vector field is defined in the first quadrant and a second one in the others. In this class and considering a degenerated Hopf bifurcation near families of centers we obtain again at least five limit cycles but now from infinity, which is of monodromic type, and with simpler computations. The proof uses a partial classification of the center problem when both systems are of center type

    Impulsive perturbations to differential equations: stable/unstable pseudo-manifolds, heteroclinic connections, and flux

    Get PDF
    State-dependent time-impulsive perturbations to a two-dimensional autonomous flow with stable and unstable manifolds are analysed by posing in terms of an integral equation which is valid in both forwards- and backwards-time. The impulses destroy the smooth invariant manifolds, necessitating new definitions for stable and unstable pseudo-manifolds. Their time-evolution is characterised by solving a Volterra integral equation of the second kind with discontinuous inhomogeniety. A criteria for heteroclinic trajectory persistence in this impulsive context is developed, as is a quantification of an instantaneous flux across broken heteroclinic manifolds. Several examples, including a kicked Duffing oscillator and an underwater explosion in the vicinity of an eddy, are used to illustrate the theory

    An Algorithmic Approach to Limit Cycles of Nonlinear Differential Systems: the Averaging Method Revisited

    Full text link
    This paper introduces an algorithmic approach to the analysis of bifurcation of limit cycles from the centers of nonlinear continuous differential systems via the averaging method. We develop three algorithms to implement the averaging method. The first algorithm allows to transform the considered differential systems to the normal formal of averaging. Here, we restricted the unperturbed term of the normal form of averaging to be identically zero. The second algorithm is used to derive the computational formulae of the averaged functions at any order. The third algorithm is based on the first two algorithms that determines the exact expressions of the averaged functions for the considered differential systems. The proposed approach is implemented in Maple and its effectiveness is shown by several examples. Moreover, we report some incorrect results in published papers on the averaging method.Comment: Proc. 44th ISSAC, July 15--18, 2019, Beijing, Chin

    5th EUROMECH nonlinear dynamics conference, August 7-12, 2005 Eindhoven : book of abstracts

    Get PDF

    5th EUROMECH nonlinear dynamics conference, August 7-12, 2005 Eindhoven : book of abstracts

    Get PDF

    Fourth SIAM Conference on Applications of Dynamical Systems

    Get PDF
    corecore