research

Impulsive perturbations to differential equations: stable/unstable pseudo-manifolds, heteroclinic connections, and flux

Abstract

State-dependent time-impulsive perturbations to a two-dimensional autonomous flow with stable and unstable manifolds are analysed by posing in terms of an integral equation which is valid in both forwards- and backwards-time. The impulses destroy the smooth invariant manifolds, necessitating new definitions for stable and unstable pseudo-manifolds. Their time-evolution is characterised by solving a Volterra integral equation of the second kind with discontinuous inhomogeniety. A criteria for heteroclinic trajectory persistence in this impulsive context is developed, as is a quantification of an instantaneous flux across broken heteroclinic manifolds. Several examples, including a kicked Duffing oscillator and an underwater explosion in the vicinity of an eddy, are used to illustrate the theory

    Similar works