State-dependent time-impulsive perturbations to a two-dimensional autonomous
flow with stable and unstable manifolds are analysed by posing in terms of an
integral equation which is valid in both forwards- and backwards-time. The
impulses destroy the smooth invariant manifolds, necessitating new definitions
for stable and unstable pseudo-manifolds. Their time-evolution is characterised
by solving a Volterra integral equation of the second kind with discontinuous
inhomogeniety. A criteria for heteroclinic trajectory persistence in this
impulsive context is developed, as is a quantification of an instantaneous flux
across broken heteroclinic manifolds. Several examples, including a kicked
Duffing oscillator and an underwater explosion in the vicinity of an eddy, are
used to illustrate the theory