13,253 research outputs found

    Cancer diagnosis using deep learning: A bibliographic review

    Get PDF
    In this paper, we first describe the basics of the field of cancer diagnosis, which includes steps of cancer diagnosis followed by the typical classification methods used by doctors, providing a historical idea of cancer classification techniques to the readers. These methods include Asymmetry, Border, Color and Diameter (ABCD) method, seven-point detection method, Menzies method, and pattern analysis. They are used regularly by doctors for cancer diagnosis, although they are not considered very efficient for obtaining better performance. Moreover, considering all types of audience, the basic evaluation criteria are also discussed. The criteria include the receiver operating characteristic curve (ROC curve), Area under the ROC curve (AUC), F1 score, accuracy, specificity, sensitivity, precision, dice-coefficient, average accuracy, and Jaccard index. Previously used methods are considered inefficient, asking for better and smarter methods for cancer diagnosis. Artificial intelligence and cancer diagnosis are gaining attention as a way to define better diagnostic tools. In particular, deep neural networks can be successfully used for intelligent image analysis. The basic framework of how this machine learning works on medical imaging is provided in this study, i.e., pre-processing, image segmentation and post-processing. The second part of this manuscript describes the different deep learning techniques, such as convolutional neural networks (CNNs), generative adversarial models (GANs), deep autoencoders (DANs), restricted Boltzmann’s machine (RBM), stacked autoencoders (SAE), convolutional autoencoders (CAE), recurrent neural networks (RNNs), long short-term memory (LTSM), multi-scale convolutional neural network (M-CNN), multi-instance learning convolutional neural network (MIL-CNN). For each technique, we provide Python codes, to allow interested readers to experiment with the cited algorithms on their own diagnostic problems. The third part of this manuscript compiles the successfully applied deep learning models for different types of cancers. Considering the length of the manuscript, we restrict ourselves to the discussion of breast cancer, lung cancer, brain cancer, and skin cancer. The purpose of this bibliographic review is to provide researchers opting to work in implementing deep learning and artificial neural networks for cancer diagnosis a knowledge from scratch of the state-of-the-art achievements

    Theoretical Interpretations and Applications of Radial Basis Function Networks

    Get PDF
    Medical applications usually used Radial Basis Function Networks just as Artificial Neural Networks. However, RBFNs are Knowledge-Based Networks that can be interpreted in several way: Artificial Neural Networks, Regularization Networks, Support Vector Machines, Wavelet Networks, Fuzzy Controllers, Kernel Estimators, Instanced-Based Learners. A survey of their interpretations and of their corresponding learning algorithms is provided as well as a brief survey on dynamic learning algorithms. RBFNs' interpretations can suggest applications that are particularly interesting in medical domains

    Caveolin-1 is a risk factor for postsurgery metastasis in preclinical melanoma models

    Get PDF
    Melanomas are highly lethal skin tumours that are frequently treated by surgical resection. However, the efficacy of such procedures is often limited by tumour recurrence and metastasis. Caveolin-1 (CAV1) has been attributed roles as a tumour suppressor, although in late-stage tumours, its presence is associated with enhanced metastasis. The expression of this protein in human melanoma development and particularly how the presence of CAV1 affects metastasis after surgery has not been defined. CAV1 expression in human melanocytes and melanomas increases with disease progression and is highest in metastatic melanomas. The effect of increased CAV1 expression can then be evaluated using B16F10 murine melanoma cells injected into syngenic immunocompetent C57BL/6 mice or human A375 melanoma cells injected into immunodeficient B6Rag1−/− mice. Augmented CAV1 expression suppresses tumour formation upon a subcutaneous injection, but enhances lung metastasis of cells injected into the tail vein in both models. A procedure was initially developed using B16F10 melanoma cells in C57BL/6 mice to mimic better the situation in patients undergoing surgery. Subcutaneous tumours of a defined size were removed surgically and local tumour recurrence and lung metastasis were evaluated after another 14 days. In this postsurgery setting, CAV1 presence in B16F10 melanomas favoured metastasis to the lung, although tumour suppression at the initial site was still evident. Similar results were obtained when evaluating A375 cells in B6Rag1−/− mice. These results implicate CAV1 expression in melanomas as a marker of poor prognosis for patients undergoing surgery as CAV1 expression promotes experimental lung metastasis in two different preclinical models

    Label-free high-throughput photoacoustic tomography of suspected circulating melanoma tumor cells in patients in vivo

    Get PDF
    Significance: Detection and characterization of circulating tumor cells (CTCs), a key determinant of metastasis, are critical for determining risk of disease progression, understanding metastatic pathways, and facilitating early clinical intervention. Aim: We aim to demonstrate label-free imaging of suspected melanoma CTCs. Approach: We use a linear-array-based photoacoustic tomography system (LA-PAT) to detect melanoma CTCs, quantify their contrast-to-noise ratios (CNRs), and measure their flow velocities in most of the superficial veins in humans. Results: With LA-PAT, we successfully imaged suspected melanoma CTCs in patients in vivo, with a CNR >9. CTCs were detected in 3 of 16 patients with stage III or IV melanoma. Among the three CTC-positive patients, two had disease progression; among the 13 CTC-negative patients, 4 showed disease progression. Conclusions: We suggest that LA-PAT can detect suspected melanoma CTCs in patients in vivo and has potential clinical applications for disease monitoring in melanoma

    A novel integrative risk index of papillary thyroid cancer progression combining genomic alterations and clinical factors.

    Get PDF
    Although the majority of papillary thyroid cancer (PTC) is indolent, a subset of PTC behaves aggressively despite the best available treatment. A major clinical challenge is to reliably distinguish early on between those patients who need aggressive treatment from those who do not. Using a large cohort of PTC samples obtained from The Cancer Genome Atlas (TCGA), we analyzed the association between disease progression and multiple forms of genomic data, such as transcriptome, somatic mutations, and somatic copy number alterations, and found that genes related to FOXM1 signaling pathway were significantly associated with PTC progression. Integrative genomic modeling was performed, controlling for demographic and clinical characteristics, which included patient age, gender, TNM stages, histological subtypes, and history of other malignancy, using a leave-one-out elastic net model and 10-fold cross validation. For each subject, the model from the remaining subjects was used to determine the risk index, defined as a linear combination of the clinical and genomic variables from the elastic net model, and the stability of the risk index distribution was assessed through 2,000 bootstrap resampling. We developed a novel approach to combine genomic alterations and patient-related clinical factors that delineates the subset of patients who have more aggressive disease from those whose tumors are indolent and likely will require less aggressive treatment and surveillance (p = 4.62 × 10-10, log-rank test). Our results suggest that risk index modeling that combines genomic alterations with current staging systems provides an opportunity for more effective anticipation of disease prognosis and therefore enhanced precision management of PTC

    Non melanoma skin cancer pathogenesis overview

    Get PDF
    (1)Background: Non-melanoma skin cancer is the most frequently diagnosed cancer in humans. The process of skin carcinogenesis is still not fully understood. However, several studies have been conducted to better explain the mechanisms that lead to malignancy; (2) Methods: We reviewed the more recent literature about the pathogenesis of non-melanoma skin cancer focusing on basal cell carcinomas, squamous cell carcinoma and actinic keratosis; (3) Results: Several papers reported genetic and molecular alterations leading to non-melanoma skin cancer. Plenty of risk factors are involved in non-melanoma skin cancer pathogenesis, including genetic and molecular alterations, immunosuppression, and ultraviolet radiation; (4) Conclusion: Although skin carcinogenesis is still not fully understood, several papers demonstrated that genetic and molecular alterations are involved in this process. In addition, plenty of non-melanoma skin cancer risk factors are now known, allowing for an effective prevention of non-melanoma skin cancer development. Compared to other papers on the same topic, our review focused on molecular and genetic factors and analyzed in detail several factors involved in non-melanoma skin cancer

    Inference of the drivers of collective movement in two cell types: Dictyostelium and melanoma

    Get PDF
    Collective cell movement is a key component of many important biological processes, including wound healing, the immune response and the spread of cancers. To understand and influence these movements, we need to be able to identify and quantify the contribution of their different underlying mechanisms. Here, we define a set of six candidate models—formulated as advection–diffusion–reaction partial differential equations—that incorporate a range of cell movement drivers. We fitted these models to movement assay data from two different cell types: Dictyostelium discoideum and human melanoma. Model comparison using widely applicable information criterion suggested that movement in both of our study systems was driven primarily by a self-generated gradient in the concentration of a depletable chemical in the cells' environment. For melanoma, there was also evidence that overcrowding influenced movement. These applications of model inference to determine the most likely drivers of cell movement indicate that such statistical techniques have potential to support targeted experimental work in increasing our understanding of collective cell movement in a range of systems
    • …
    corecore