883 research outputs found

    Enhancing pharmaceutical packaging through a technology ecosystem to facilitate the reuse of medicines and reduce medicinal waste

    Get PDF
    The idea of reusing dispensed medicines is appealing to the general public provided its benefits are illustrated, its risks minimized, and the logistics resolved. For example, medicine reuse could help reduce medicinal waste, protect the environment and improve public health. However, the associated technologies and legislation facilitating medicine reuse are generally not available. The availability of suitable technologies could arguably help shape stakeholders’ beliefs and in turn, uptake of a future medicine reuse scheme by tackling the risks and facilitating the practicalities. A literature survey is undertaken to lay down the groundwork for implementing technologies on and around pharmaceutical packaging in order to meet stakeholders’ previously expressed misgivings about medicine reuse (’stakeholder requirements’), and propose a novel ecosystem for, in effect, reusing returned medicines. Methods: A structured literature search examining the application of existing technologies on pharmaceutical packaging to enable medicine reuse was conducted and presented as a narrative review. Results: Reviewed technologies are classified according to different stakeholders’ requirements, and a novel ecosystem from a technology perspective is suggested as a solution to reusing medicines. Conclusion: Active sensing technologies applying to pharmaceutical packaging using printed electronics enlist medicines to be part of the Internet of Things network. Validating the quality and safety of returned medicines through this network seems to be the most effective way for reusing medicines and the correct application of technologies may be the key enabler

    Steganography Approach to Image Authentication Using Pulse Coupled Neural Network

    Get PDF
    This paper introduces a model for the authentication of large-scale images. The crucial element of the proposed model is the optimized Pulse Coupled Neural Network. This neural network generates position matrices based on which the embedding of authentication data into cover images is applied. Emphasis is placed on the minimalization of the stego image entropy change. Stego image entropy is consequently compared with the reference entropy of the cover image. The security of the suggested solution is granted by the neural network weights initialized with a steganographic key and by the encryption of accompanying steganographic data using the AES-256 algorithm. The integrity of the images is verified through the SHA-256 hash function. The integration of the accompanying and authentication data directly into the stego image and the authentication of the large images are the main contributions of the work

    radiomic features for medical images tamper detection by equivalence checking

    Get PDF
    Abstract Digital medical images are very easy to be modified for illegal purposes. An attacker may perform this act in order to stop a political candidate, sabotage research, commit insurance fraud, perform an act of terrorism, or even commit murder. Between the machine that performs medical scans and the radiologist monitor, medical images pass through different devices: in this chain an attacker can perform its malicious action. In this paper we propose a method aimed to avoid medical images modifications by means of equivalence checking. Magnetic images are represented as finite state automata and equivalence checking is exploited to check whether the medical resource have been subject to illegal modifications

    Digital watermarking in medical images

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University, 05/12/2005.This thesis addresses authenticity and integrity of medical images using watermarking. Hospital Information Systems (HIS), Radiology Information Systems (RIS) and Picture Archiving and Communication Systems (P ACS) now form the information infrastructure for today's healthcare as these provide new ways to store, access and distribute medical data that also involve some security risk. Watermarking can be seen as an additional tool for security measures. As the medical tradition is very strict with the quality of biomedical images, the watermarking method must be reversible or if not, region of Interest (ROI) needs to be defined and left intact. Watermarking should also serve as an integrity control and should be able to authenticate the medical image. Three watermarking techniques were proposed. First, Strict Authentication Watermarking (SAW) embeds the digital signature of the image in the ROI and the image can be reverted back to its original value bit by bit if required. Second, Strict Authentication Watermarking with JPEG Compression (SAW-JPEG) uses the same principal as SAW, but is able to survive some degree of JPEG compression. Third, Authentication Watermarking with Tamper Detection and Recovery (AW-TDR) is able to localise tampering, whilst simultaneously reconstructing the original image

    Three layer authentications with a spiral block mapping to prove authenticity in medical images

    Get PDF
    Digital medical image has a potential to be manipulated by unauthorized persons due to advanced communication technology. Verifying integrity and authenticity have become important issues on the medical image. This paper proposed a self-embedding watermark using a spiral block mapping for tamper detection and restoration. The block-based coding with the size of 3x3 was applied to perform selfembedding watermark with two authentication bits and seven recovery bits. The authentication bits are obtained from a set of condition between sub-block and block image, and the parity bits of each sub-block. The authentication bits and the recovery bits are embedded in the least significant bits using the proposed spiral block mapping. The recovery bits are embedded into different sub-blocks based on a spiral block mapping. The watermarked images were tested under various tampered images such as blurred image, unsharp-masking, copy-move, mosaic, noise, removal, and sharpening. The experimental results show that the scheme achieved a PSNR value of about 51.29 dB and a SSIM value of about 0.994 on the watermarked image. The scheme showed tamper localization with accuracy of 93.8%. In addition, the proposed scheme does not require external information to perform recovery bits. The proposed scheme was able to recover the tampered image with a PSNR value of 40.45 dB and a SSIM value of 0.994

    Digital Video Inpainting Detection Using Correlation Of Hessian Matrix

    Full text link
    • …
    corecore