5 research outputs found

    Towards enabling cardiac digital twins of myocardial infarction using deep computational models for inverse inference

    Get PDF
    Cardiac digital twins (CDTs) have the potential to offer individualized evaluation of cardiac function in a non-invasive manner, making them a promising approach for personalized diagnosis and treatment planning of myocardial infarction (MI). The inference of accurate myocardial tissue properties is crucial in creating a reliable CDT of MI. In this work, we investigate the feasibility of inferring myocardial tissue properties from the electrocardiogram (ECG) within a CDT platform. The platform integrates multi-modal data, such as cardiac MRI and ECG, to enhance the accuracy and reliability of the inferred tissue properties. We perform a sensitivity analysis based on computer simulations, systematically exploring the effects of infarct location, size, degree of transmurality, and electrical activity alteration on the simulated QRS complex of ECG, to establish the limits of the approach. We subsequently present a novel deep computational model, comprising a dual-branch variational autoencoder and an inference model, to infer infarct location and distribution from the simulated QRS. The proposed model achieves mean Dice scores of 0.457 ± 0.317 and 0.302 ± 0.273 for the inference of left ventricle scars and border zone, respectively. The sensitivity analysis enhances our understanding of the complex relationship between infarct characteristics and electrophysiological features. The in silico experimental results show that the model can effectively capture the relationship for the inverse inference, with promising potential for clinical application in the future. The code is available at https: //github.com/lileitech/MI_inverse_inference

    Patient-specific in silico 3D coronary model in cardiac catheterisation laboratories

    Get PDF
    Coronary artery disease is caused by the buildup of atherosclerotic plaque in the coronary arteries, affecting the blood supply to the heart, one of the leading causes of death around the world. X-ray coronary angiography is the most common procedure for diagnosing coronary artery disease, which uses contrast material and x-rays to observe vascular lesions. With this type of procedure, blood flow in coronary arteries is viewed in real-time, making it possible to detect stenoses precisely and control percutaneous coronary interventions and stent insertions. Angiograms of coronary arteries are used to plan the necessary revascularisation procedures based on the calculation of occlusions and the affected segments. However, their interpretation in cardiac catheterisation laboratories presently relies on sequentially evaluating multiple 2D image projections, which limits measuring lesion severity, identifying the true shape of vessels, and analysing quantitative data. In silico modelling, which involves computational simulations of patient-specific data, can revolutionise interventional cardiology by providing valuable insights and optimising treatment methods. This paper explores the challenges and future directions associated with applying patient-specific in silico models in catheterisation laboratories. We discuss the implications of the lack of patient-specific in silico models and how their absence hinders the ability to accurately predict and assess the behaviour of individual patients during interventional procedures. Then, we introduce the different components of a typical patient-specific in silico model and explore the potential future directions to bridge this gap and promote the development and utilisation of patient-specific in silico models in the catheterisation laboratories

    Fast 4D Ultrasound Registration for Image Guided Liver Interventions

    Get PDF
    Liver problems are a serious health issue. The common liver problems are hepatitis, fatty liver, liver cancer and liver damage caused by alcohol abuse. Continuous, long term disease may cause a condition of the liver known as the Liver Cirrhosis. Liver cirrhosis makes the liver scarred and hardened up causing portal hypertension. In such a situation the collateral vessels try to bypass the liver as blood cannot freely flow through the liver; causing internal bleeding. One of the treatments of portal hypertension is Transjugular intrahepatic portosystemic shunt (TIPS). In a TIPS procedure a tract in the liver is created that shortcuts two veins in the liver, reducing the portal hypertension. Radiofrequency ablation (RFA) is use for the treatment of liver cancer. In RFA, a needle electrode is placed through the skin into the liver tumor. High-frequency electrical currents are passed through the electrode, creating heat that destroys the cancer cells, without damaging the surrounding liver tissues. TIPS and RFA are minimally invasive procedures, where small incisions are made to perform the surgery and are alternative to open surgery. A minimally invasive alternative has large potential in reducing complication rates, minimizing surgical trauma and reducing hospital stay. However, in these procedures, due to lack of direct eyesight, three-dimensional imaging information about the anatomy and instruments during the intervention is required. The most difficult part of these procedures is the interpretation and selection of oblique views for needle/instrument insertion and target visualization. In our work we develop and evaluate techniques that enable the effective use of 3D ultrasound for image guided interventions. Ultrasound is low cost, mobile and unlike CT and X-rays does not use any harmful radiation in the imaging process. During these procedures, breathing shifts the region of interest and makes it difficult to constantly focus on a region of interest. We provide an approach to correct for the motion due to breathing. Additionally, we propose a method for image fusion of interventional ultrasound and preoperative imaging modalities such as CT for cases where the lesions are visible in CT but not visible in ultrasound. Incorporating CT data during intervention additionally adds greater definition and precision to the ultrasound based navigation system. Concluding, in this thesis, we presented methods and evaluated their accuracies that demonstrate the use of real-time 3D US and its fusion with CT in potentially improving image guidance in minimally invasive US guided liver interventions

    Investigation of Multi-dimensional Tensor Multi-task Learning for Modeling Alzheimer's Disease Progression

    Get PDF
    Machine learning (ML) techniques for predicting Alzheimer's disease (AD) progression can significantly assist clinicians and researchers in constructing effective AD prevention and treatment strategies. The main constraints on the performance of current ML approaches are prediction accuracy and stability problems in medical small dataset scenarios, monotonic data formats (loss of multi-dimensional knowledge of the data and loss of correlation knowledge between biomarkers) and biomarker interpretability limitations. This thesis investigates how multi-dimensional information and knowledge from biomarker data integrated with multi-task learning approaches to predict AD progression. Firstly, a novel similarity-based quantification approach is proposed with two components: multi-dimensional knowledge vector construction and amalgamated magnitude-direction quantification of brain structural variation, which considers both the magnitude and directional correlations of structural variation between brain biomarkers and encodes the quantified data as a third-order tensor to address the problem of monotonic data form. Secondly, multi-task learning regression algorithms with the ability to integrate multi-dimensional tensor data and mine MRI data for spatio-temporal structural variation information and knowledge were designed and constructed to improve the accuracy, stability and interpretability of AD progression prediction in medical small dataset scenarios. The algorithm consists of three components: supervised symmetric tensor decomposition for extracting biomarker latent factors, tensor multi-task learning regression and algorithmic regularisation terms. The proposed algorithm aims to extract a set of first-order latent factors from the raw data, each represented by its first biomarker, second biomarker and patient sample dimensions, to elucidate potential factors affecting the variability of the data in an interpretable manner and can be utilised as predictor variables for training the prediction model that regards the prediction of each patient as a task, with each task sharing a set of biomarker latent factors obtained from tensor decomposition. Knowledge sharing between tasks improves the generalisation ability of the model and addresses the problem of sparse medical data. The experimental results demonstrate that the proposed approach achieves superior accuracy and stability in predicting various cognitive scores of AD progression compared to single-task learning, benchmarks and state-of-the-art multi-task regression methods. The proposed approach identifies brain structural variations in patients and the important brain biomarker correlations revealed by the experiments can be utilised as potential indicators for AD early identification

    Validating supervised learning approaches to the prediction of disease status in neuroimaging

    Get PDF
    Alzheimer’s disease (AD) is a serious global health problem with growing human and monetary costs. Neuroimaging data offers a rich source of information about pathological changes in the brain related to AD, but its high dimensionality makes it difficult to fully exploit using conventional methods. Automated neuroimage assessment (ANA) uses supervised learning to model the relationships between imaging signatures and measures of disease. ANA methods are assessed on the basis of their predictive performance, which is measured using cross validation (CV). Despite its ubiquity, CV is not always well understood, and there is a lack of guidance as to best practice. This thesis is concerned with the practice of validation in ANA. It introduces several key challenges and considers potential solutions, including several novel contributions. Part I of this thesis reviews the field and introduces key theoretical concepts related to CV. Part II is concerned with bias due to selective reporting of performance results. It describes an empirical investigation to assess the likely level of this bias in the ANA literature and relative importance of several contributory factors. Mitigation strategies are then discussed. Part III is concerned with the optimal selection of CV strategy with respect to bias, variance and computational cost. Part IV is concerned with the statistical analysis of CV performance results. It discusses the failure of conventional statistical procedures, reviews previous alternative approaches, and demonstrates a new heuristic solution that fares well in preliminary investigations. Though the focus of this thesis is AD ANA, the issues it addresses are of great importance to all applied machine learning fields where samples are limited and predictive performance is critical
    corecore