133,477 research outputs found

    Quantitative Analysis in Multimodality Imaging: Challenges and Opportunities

    Get PDF
    This talk reflects the tremendous ongoing interest in molecular and dual-modality imaging (PET/CT, SPECT/CT and PET/MR) as both clinical and research imaging modalities in the past decade. An overview of molecular multi-modality medical imaging instrumentation as well as simulation, reconstruction, quantification, and related image processing issues with special emphasis on quantitative analysis of nuclear medical images are presented. This tutorial aims to bring the biomedical image processing community a review on the state-of-the-art algorithms used and under development for accurate quantitative analysis in multimodality and multi-parametric molecular imaging and their validation mainly from the developer’s perspective with emphasis on image reconstruction and analysis techniques. It will inform the audience about a series of advanced development recently carried out at the PET instrumentation & Neuroimaging Lab of Geneva University Hospital and other active research groups. Current and prospective future applications of quantitative molecular imaging also are addressed, especially its use prior to therapy for dose distribution modeling and optimization of treatment volumes in external radiation therapy and patient-specific 3D dosimetry in targeted therapy toward the concept of image-guided radiation therapy. &nbsp

    Techniques and software tool for 3D multimodality medical image segmentation

    Get PDF
    The era of noninvasive diagnostic radiology and image-guided radiotherapy has witnessed burgeoning interest in applying different imaging modalities to stage and localize complex diseases such as atherosclerosis or cancer. It has been observed that using complementary information from multimodality images often significantly improves the robustness and accuracy of target volume definitions in radiotherapy treatment of cancer. In this work, we present techniques and an interactive software tool to support this new framework for 3D multimodality medical image segmentation. To demonstrate this methodology, we have designed and developed a dedicated open source software tool for multimodality image analysis MIASYS. The software tool aims to provide a needed solution for 3D image segmentation by integrating automatic algorithms, manual contouring methods, image preprocessing filters, post-processing procedures, user interactive features and evaluation metrics. The presented methods and the accompanying software tool have been successfully evaluated for different radiation therapy and diagnostic radiology applications

    A novel framework for MR image segmentation and quantification by using MedGA.

    Get PDF
    BACKGROUND AND OBJECTIVES: Image segmentation represents one of the most challenging issues in medical image analysis to distinguish among different adjacent tissues in a body part. In this context, appropriate image pre-processing tools can improve the result accuracy achieved by computer-assisted segmentation methods. Taking into consideration images with a bimodal intensity distribution, image binarization can be used to classify the input pictorial data into two classes, given a threshold intensity value. Unfortunately, adaptive thresholding techniques for two-class segmentation work properly only for images characterized by bimodal histograms. We aim at overcoming these limitations and automatically determining a suitable optimal threshold for bimodal Magnetic Resonance (MR) images, by designing an intelligent image analysis framework tailored to effectively assist the physicians during their decision-making tasks. METHODS: In this work, we present a novel evolutionary framework for image enhancement, automatic global thresholding, and segmentation, which is here applied to different clinical scenarios involving bimodal MR image analysis: (i) uterine fibroid segmentation in MR guided Focused Ultrasound Surgery, and (ii) brain metastatic cancer segmentation in neuro-radiosurgery therapy. Our framework exploits MedGA as a pre-processing stage. MedGA is an image enhancement method based on Genetic Algorithms that improves the threshold selection, obtained by the efficient Iterative Optimal Threshold Selection algorithm, between the underlying sub-distributions in a nearly bimodal histogram. RESULTS: The results achieved by the proposed evolutionary framework were quantitatively evaluated, showing that the use of MedGA as a pre-processing stage outperforms the conventional image enhancement methods (i.e., histogram equalization, bi-histogram equalization, Gamma transformation, and sigmoid transformation), in terms of both MR image enhancement and segmentation evaluation metrics. CONCLUSIONS: Thanks to this framework, MR image segmentation accuracy is considerably increased, allowing for measurement repeatability in clinical workflows. The proposed computational solution could be well-suited for other clinical contexts requiring MR image analysis and segmentation, aiming at providing useful insights for differential diagnosis and prognosis

    Segmentation of pelvic structures from preoperative images for surgical planning and guidance

    Get PDF
    Prostate cancer is one of the most frequently diagnosed malignancies globally and the second leading cause of cancer-related mortality in males in the developed world. In recent decades, many techniques have been proposed for prostate cancer diagnosis and treatment. With the development of imaging technologies such as CT and MRI, image-guided procedures have become increasingly important as a means to improve clinical outcomes. Analysis of the preoperative images and construction of 3D models prior to treatment would help doctors to better localize and visualize the structures of interest, plan the procedure, diagnose disease and guide the surgery or therapy. This requires efficient and robust medical image analysis and segmentation technologies to be developed. The thesis mainly focuses on the development of segmentation techniques in pelvic MRI for image-guided robotic-assisted laparoscopic radical prostatectomy and external-beam radiation therapy. A fully automated multi-atlas framework is proposed for bony pelvis segmentation in MRI, using the guidance of MRI AE-SDM. With the guidance of the AE-SDM, a multi-atlas segmentation algorithm is used to delineate the bony pelvis in a new \ac{MRI} where there is no CT available. The proposed technique outperforms state-of-the-art algorithms for MRI bony pelvis segmentation. With the SDM of pelvis and its segmented surface, an accurate 3D pelvimetry system is designed and implemented to measure a comprehensive set of pelvic geometric parameters for the examination of the relationship between these parameters and the difficulty of robotic-assisted laparoscopic radical prostatectomy. This system can be used in both manual and automated manner with a user-friendly interface. A fully automated and robust multi-atlas based segmentation has also been developed to delineate the prostate in diagnostic MR scans, which have large variation in both intensity and shape of prostate. Two image analysis techniques are proposed, including patch-based label fusion with local appearance-specific atlases and multi-atlas propagation via a manifold graph on a database of both labeled and unlabeled images when limited labeled atlases are available. The proposed techniques can achieve more robust and accurate segmentation results than other multi-atlas based methods. The seminal vesicles are also an interesting structure for therapy planning, particularly for external-beam radiation therapy. As existing methods fail for the very onerous task of segmenting the seminal vesicles, a multi-atlas learning framework via random decision forests with graph cuts refinement has further been proposed to solve this difficult problem. Motivated by the performance of this technique, I further extend the multi-atlas learning to segment the prostate fully automatically using multispectral (T1 and T2-weighted) MR images via hybrid \ac{RF} classifiers and a multi-image graph cuts technique. The proposed method compares favorably to the previously proposed multi-atlas based prostate segmentation. The work in this thesis covers different techniques for pelvic image segmentation in MRI. These techniques have been continually developed and refined, and their application to different specific problems shows ever more promising results.Open Acces
    • …
    corecore