15 research outputs found

    An Efficient Certificateless Encryption for Secure Data Sharing in Public Clouds

    Get PDF
    We propose a mediated certificateless encryption scheme without pairing operations for securely sharing sensitive information in public clouds. Mediated certificateless public key encryption (mCL-PKE) solves the key escrow problem in identity based encryption and certificate revocation problem in public key cryptography. However, existing mCL-PKE schemes are either inefficient because of the use of expensive pairing operations or vulnerable against partial decryption attacks. In order to address the performance and security issues, in this paper, we first propose a mCL-PKE scheme without using pairing operations. We apply our mCL-PKE scheme to construct a practical solution to the problem of sharing sensitive information in public clouds. The cloud is employed as a secure storage as well as a key generation center. In our system, the data owner encrypts the sensitive data using the cloud generated users’ public keys based on its access control policies and uploads the encrypted data to the cloud. Upon successful authorization, the cloud partially decrypts the encrypted data for the users. The users subsequently fully decrypt the partially decrypted data using their private keys. The confidentiality of the content and the keys is preserved with respect to the cloud, because the cloud cannot fully decrypt the information. We also propose an extension to the above approach to improve the efficiency of encryption at the data owner. We implement our mCL-PKE scheme and the overall cloud based system, and evaluate its security and performance. Our results show that our schemes are efficient and practical

    Strongly Unforgeable Certificateless Signature Resisting Attacks from Malicious-But-Passive KGC

    Get PDF
    In digital signature, strong unforgeability requires that an attacker cannot forge a new signature on any previously signed/new messages, which is attractive in both theory and practice. Recently, a strongly unforgeable certificateless signature (CLS) scheme without random oracles was presented. In this paper, we firstly show that the scheme fails to achieve strong unforgeability by forging a new signature on a previously signed message under its adversarial model. Then, we point out that the scheme is also vulnerable to the malicious-but-passive key generation center (MKGC) attacks. Finally, we propose an improved strongly unforgeable CLS scheme in the standard model. The improved scheme not only meets the requirement of strong unforgeability but also withstands the MKGC attacks. To the best of our knowledge, we are the first to prove a CLS scheme to be strongly unforgeable against the MKGC attacks without using random oracles

    General Certificateless Encryption and Timed-Release Encryption

    Get PDF
    While recent timed-release encryption (TRE) schemes are implicitly supported by a certificateless encryption (CLE) mechanism, the security models of CLE and TRE differ and there is no generic transformation from a CLE to a TRE. This paper gives a generalized model for CLE that fulfills the requirements of TRE. This model is secure against adversaries with adaptive trapdoor extraction capabilities, decryption capabilities for arbitrary public keys, and partial decryption capabilities. It also supports hierarchical identifiers. We propose a concrete scheme under our generalized model and prove it secure without random oracles, yielding the first strongly-secure security-mediated CLE and the first TRE in the standard model. In addition, our technique of partial decryption is different from the previous approach

    Generic Construction of Certificateless Signcryption Scheme

    Get PDF
    Confidentiality and message authentication are the most important security goals that can be achieved simultaneously by Signcryption scheme. It is a cryptographic technique that performs both the functions of digital signature and public key encryption in a single logical step significantly at a lower cost than that of conventional method of signature-then-encryption. The paper proposes an efficient Certificateless Signcryption Scheme(CLSC) in random oracle model on bilinear mapping. It is provably secure under the assumptions of intractability of k-CAA, Inv-CDH, q-BDHI and CDH problems

    A Revocable Online-Offline Certificateless Signature Scheme without Pairing

    Get PDF
    Certificateless Public key Cryptography is a widely studied paradigm due to its advantages of not having the key-escrow problem and the lack of use of certificates. Online-Offline signature schemes are extremely relevant today because of their great practical applications. In an online-offline signature scheme all the heavy computation is done on powerful processors and stored securely in the offline phase, and the online component requires only light computation. Hence, it is widely used in several low-resource devices like mobile phones, etc. Revocation is another important problem of wide interest as it helps to keep a check on misbehaving users. Currently, there are very few revocable certificateless signature schemes in the literature. We have addressed some of the limitations of the previously existing schemes and designed a new model for the same that involves periodic time generated keys. We present a revocable online-offline certificateless signature scheme without pairing. Pairing, though a very useful mathematical function, comes at the cost of heavy computation. Our scheme is proved secure in the random oracle model using a tight security reduction to the computational Diffie-Hellman problem

    Pairing-based cryptosystems and key agreement protocols.

    Get PDF
    For a long time, pairings on elliptic curves have been considered to be destructive in elliptic curve cryptography. Only recently after some pioneering works, particularly the well-known Boneh-Franklin identity-based encryption (IBE), pairings have quickly become an important tool to construct novel cryptographic schemes. In this thesis, several new cryptographic schemes with pairings are proposed, which are both efficient and secure with respect to a properly defined security model, and some relevant previous schemes are revisited. IBE provides a public key encryption mechanism where a public key can be an arbitrary string such as an entity identifier and unwieldy certificates are unnecessary. Based on the Sakai-Kasahara key construction, an IBE scheme which is secure in the Boneh-Franklin IBE model is constructed, and two identity-based key encapsulation mechanisms are proposed. These schemes achieve the best efficiency among the existing schemes to date. Recently Al-Riyami and Paterson introduced the certificateless public key encryption (CL-PKE) paradigm, which eliminates the need of certificates and at the same time retains the desirable properties of IBE without the key escrow problem. The security formulation of CL-PKE is revisited and a strong security model for this type of mechanism is defined. Following a heuristic approach, three efficient CL-PKE schemes which are secure in the defined strong security model are proposed. Identity-based two-party key agreement protocols from pairings are also investigated. The Bellare-Rogaway key agreement model is enhanced and within the model several previously unproven protocols in the literature are formally analysed. In considering that the user identity may be sensitive information in many environments, an identity-based key agreement protocol with unilateral identity privacy is proposed

    Cryptographic Schemes based on Elliptic Curve Pairings

    Get PDF
    This thesis introduces the concept of certificateless public key cryptography (CLPKC). Elliptic curve pairings are then used to make concrete CL-PKC schemes and are also used to make other efficient key agreement protocols. CL-PKC can be viewed as a model for the use of public key cryptography that is intermediate between traditional certificated PKC and ID-PKC. This is because, in contrast to traditional public key cryptographic systems, CL-PKC does not require the use of certificates to guarantee the authenticity of public keys. It does rely on the use of a trusted authority (TA) who is in possession of a master key. In this respect, CL-PKC is similar to identity-based public key cryptography (ID-PKC). On the other hand, CL-PKC does not suffer from the key escrow property that is inherent in ID-PKC. Applications for the new infrastructure are discussed. We exemplify how CL-PKC schemes can be constructed by constructing several certificateless public key encryption schemes and modifying other existing ID based schemes. The lack of certificates and the desire to prove the schemes secure in the presence of an adversary who has access to the master key or has the ability to replace public keys, requires the careful development of new security models. We prove that some of our schemes are secure, provided that the Bilinear Diffie-Hellman Problem is hard. We then examine Joux’s protocol, which is a one round, tripartite key agreement protocol that is more bandwidth-efficient than any previous three-party key agreement protocol, however, Joux’s protocol is insecure, suffering from a simple man-in-the-middle attack. We show how to make Joux’s protocol secure, presenting several tripartite, authenticated key agreement protocols that still require only one round of communication. The security properties of the new protocols are studied. Applications for the protocols are also discussed

    Two-Factor Data Security Protection Mechanism for Cloud Storage System

    Full text link

    Certificateless Proxy Re-Encryption Without Pairing: Revisited

    Get PDF
    Proxy Re-Encryption was introduced by Blaze, Bleumer and Strauss to efficiently solve the problem of delegation of decryption rights. In proxy re-encryption, a semi-honest proxy transforms a ciphertext intended for Alice to a ciphertext of the same message for Bob without learning anything about the underlying message. From its introduction, several proxy re-encryption schemes in the Public Key Infrastructure (PKI) and Identity (ID) based setting have been proposed. In practice, systems in the public key infrastructure suffer from the \textit{certificate management problem} and those in identity based setting suffer from the \textit{key escrow problem}. Certificateless Proxy Re-encryption schemes enjoy the advantages provided by ID-based constructions without suffering from the key escrow problem. In this work, we construct the \textit{first} unidirectional, single-hop CCA-secure certificateless proxy re-encryption scheme \textit{without} \textit{pairing} by extending the PKI based construction of Chow et al. proposed in 2010. We prove its security in the random oracle model under the Computational Diffie-Hellman (CDH) assumption. Prior to this work, the only secure certificateless proxy re-encryption scheme is due to Guo et al. proposed in 2013 using bilinear pairing. They proved their construction is RCCA-secure under qq-weak Decisional Bilinear Diffie-Hellman assumption. The construction proposed in this work is more efficient than that system and its security relies on more standard assumptions. We also show that the recently proposed construction of Yang et al. is insecure with respect to the security model considered in this work
    corecore