5,461 research outputs found

    Circadian variation in gastric vagal afferent mechanosensitivity

    Get PDF
    Food intake is coordinated to cellular metabolism by clock gene expression with a master clock in the suprachiasmatic nucleus synchronized by light exposure. Gastric vagal afferents play a role in regulating food intake, but it is unknown whether they exhibit circadian variation in their mechanosensitivity. We aimed to determine whether gastric vagal afferents express clock genes and whether their response to mechanical stimuli oscillates throughout the light/dark cycle. Nodose ganglia were collected from 8-week-old female C57BL/6 mice every 3 h starting at lights off (1800 h) to quantify Bmal1, Per1, Per2, and Nr1d1 mRNA by qRT-PCR. Additionally in vitro single-fiber recordings of gastric vagal mechanoreceptors were taken at all time points. Per1, Per2, Bmal1, and Nr1d1 mRNA is expressed in the nodose ganglia and levels oscillated over a 24 h period. In mice fed ad libitum, gastric content was 3 times higher at 0000 h and 0300 h than 1200 h. The response of tension receptors to 3 g stretch was reduced by up to 70% at 2100 h, 0000 h, and 0300 h compared with 1200 h. Gastric mucosal receptor response to stroking with a 50 mg von Frey hair was 3 times greater at 1200 h and 1500 h than the response at 0000 h. Similar findings were obtained in mice fasted for 6 h or maintained in darkness for 3 d before study. Therefore, these changes do not result from food intake or the light/dark cycle. Thus, gastric vagal mechanoreceptors display circadian rhythm, which may act to control food intake differentially at different times of the day.Stephen J. Kentish, Claudine L. Frisby, David J. Kennaway, Gary A. Wittert, and Amanda J. Pag

    Peripheral Mediators of Colorectal Nociception and Sensitization

    Get PDF
    Several ion channels are thought to facilitate colorectal afferent neuron sensitization, which contributes to abdominal pain in irritable bowel syndrome (IBS). In the present work, I hypothesized that two such channels – TRPV1 and P2X3 – cooperate to mediate colorectal pain and hypersensitivity. To test this, I employed TRPV1-P2X3 double knockout (TPDKO) mice and pharmacological antagonists and evaluated combined channel contributions to whole- organism responses to colorectal distension (CRD) and afferent fiber responses to colorectal stretch. Baseline responses to CRD were unexpectedly greater in TPDKO compared with control mice, but zymosan-produced CRD hypersensitivity was absent in TPDKO mice. Relative to control mice, proportions of afferent mechano-sensitive and -insensitive classes were not different in TPDKO mice. Whereas responses of mucosal and serosal class afferents to mechanical probing were unaffected, responses of muscular (but not muscular/mucosal) afferents to stretch were significantly attenuated in TPDKO mice as was sensitization by inflammatory soup of both muscular and muscular/mucosal afferents. In pharmacological studies, the TRPV1 antagonist A889425 and P2X3 antagonist TNP-ATP, alone and in combination, applied onto stretch-sensitive afferent endings attenuated afferent responses to stretch; combined antagonism produced greater attenuation. In the aggregate, these observations suggest that: (1) genetic manipulation of TRPV1 and P2X3 leads to reduction in colorectal mechanosensation peripherally and compensatory changes and/or disinhibition of other channels centrally and (2) combined pharmacological antagonism produces more robust attenuation of mechanosensation peripherally than single antagonism. The relative importance of these channels appears to be enhanced in hypersensitivity, highlighting the potential utility of multi-target pharmacotherapy in IBS

    Cell reorientation under cyclic stretching

    Get PDF
    Mechanical cues from the extracellular microenvironment play a central role in regulating the structure, function and fate of living cells. Nevertheless, the precise nature of the mechanisms and processes underlying this crucial cellular mechanosensitivity remains a fundamental open problem. Here we provide a novel framework for addressing cellular sensitivity and response to external forces by experimentally and theoretically studying one of its most striking manifestations -- cell reorientation to a uniform angle in response to cyclic stretching of the underlying substrate. We first show that existing approaches are incompatible with our extensive measurements of cell reorientation. We then propose a fundamentally new theory that shows that dissipative relaxation of the cell's passively-stored, two-dimensional, elastic energy to its minimum actively drives the reorientation process. Our theory is in excellent quantitative agreement with the complete temporal reorientation dynamics of individual cells, measured over a wide range of experimental conditions, thus elucidating a basic aspect of mechanosensitivity.Comment: For supplementary materials, see http://www.nature.com/ncomms/2014/140530/ncomms4938/extref/ncomms4938-s1.pd

    Generation and evaluation of a large mutational library from the Escherichia coli mechanosensitive channel of large conductance, MscL - Implications for channel gating and evolutionary design

    Get PDF
    Random mutagenesis of the mechanosensitive channel of large conductance (MscL) from Escherichia coli coupled with a high-throughput functional screen has provided new insights into channel structure and function. Complementary interactions of conserved residues proposed in a computational model for gating have been evaluated, and important functional regions of the channel have been identified. Mutational analysis shows that the proposed S1 helix, despite having several highly conserved residues, can be heavily mutated without significantly altering channel function. The pattern of mutations that make MscL more difficult to gate suggests that MscL senses tension with residues located near the lipid headgroups of the bilayer. The range of phenotypical changes seen has implications for a proposed model for the evolutionary origin of mechanosensitive channels

    Mutations in KCNK4 that Affect Gating Cause a Recognizable Neurodevelopmental Syndrome

    Get PDF
    Aberrant activation or inhibition of potassium (K+) currents across the plasma membrane of cells has been causally linked to altered neurotransmission, cardiac arrhythmias, endocrine dysfunction, and (more rarely) perturbed developmental processes. The K+ channel subfamily K member 4 (KCNK4), also known as TRAAK (TWIK-related arachidonic acid-stimulated K+ channel), belongs to the mechano-gated ion channels of the TRAAK/TREK subfamily of two-pore-domain (K2P) K+ channels. While K2P channels are well known to contribute to the resting membrane potential and cellular excitability, their involvement in pathophysiological processes remains largely uncharacterized. We report that de novo missense mutations in KCNK4 cause a recognizable syndrome with a distinctive facial gestalt, for which we propose the acronym FHEIG (facial dysmorphism, hypertrichosis, epilepsy, intellectual disability/developmental delay, and gingival overgrowth). Patch-clamp analyses documented a significant gain of function of the identified KCNK4 channel mutants basally and impaired sensitivity to mechanical stimulation and arachidonic acid. Co-expression experiments indicated a dominant behavior of the disease-causing mutations. Molecular dynamics simulations consistently indicated that mutations favor sealing of the lateral intramembrane fenestration that has been proposed to negatively control K+ flow by allowing lipid access to the central cavity of the channel. Overall, our findings illustrate the pleiotropic effect of dysregulated KCNK4 function and provide support to the hypothesis of a gating mechanism based on the lateral fenestrations of K2P channels
    • …
    corecore